

Lecture Notes in Computer Science 4313
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Tiziana Margaria Bernhard Steffen (Eds.)

LeveragingApplications
of Formal Methods

First International Symposium, ISoLA 2004
Paphos, Cyprus, October 30 - November 2, 2004
Revised Selected Papers

13

Volume Editors

Tiziana Margaria
Lehrstuhl für Service and Software Engineering
Universität Potsdam , Germany
E-mail: margaria@cs.uni-potsdam.de

Bernhard Steffen
Universität Dortmund
FB Informatik, Lehrstuhl 5
Dortmund, Germany
E-mail: steffen@cs.uni-dortmund.de

Library of Congress Control Number: 2006935874

CR Subject Classification (1998): F.3, D.2.4, D.3, C.3, D.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-48928-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-48928-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11925040 06/3142 5 4 3 2 1 0

Preface

This volume contains the main proceedings for ISoLA 2004, the 1st Interna-
tional Symposium on Leveraging Applications of Formal Methods held in Pa-
phos (Cyprus) October–November 2004. Besides the 12 papers in this volume,
other ISoLA 2004 contributions were selected for thematical special issues of
the international journals of Theoretical Computer Science (TCS-B), Software
Tools for Technolgoy Transfer (STTT), as well as Integrated Design and Process
Science (SDPS transactions).

ISoLA 2004 served the need of providing a forum for developers, users, and
researchers to discuss issues related to the adoption and use of rigorous tools
and methods for the specification, analysis, verification, certification, construc-
tion, test, and maintenance of systems from the point of view of their different
application domains. Thus, the ISoLA series of events serves the purpose of
bridging the gap between designers and developers of rigorous tools, and users
in engineering and in other disciplines, and of fostering and exploiting synergetic
relationships among scientists, engineers, software developers, decision makers,
and other critical thinkers in companies and organizations. In particular, by
providing a venue for the discussion of common problems, requirements, algo-
rithms, methodologies, and practices, ISoLA aims at supporting researchers in
their quest to improve the utility, reliability, flexibility, and efficiency of tools
for building systems, and users in their search for adequate solutions to their
problems.

September 2006 Tiziana Margaria
Bernhard Steffen

Organization

Committees

Symposium Chair Tiziana Margaria, University of Potsdam,
Germany

Program Chair Bernhard Steffen, University of Dortmund,
Germany

Organization Chair Anna Philippou, University of Cyprus, Cyprus

Industrial Chair Manfred Reitenspiess, Fujitsu Siemens,
Germany

Program Committee

Ed Brinksma University of Twente, Netherlands
Peter Buchholz University of Dortmund, Germany
Muffy Calder University of Glasgow, UK
Radhia Cousot Ecole Polytechnique, France
Jin Song Dong National University of Singapore
Ibrahim Esat Brunel University, UK
John Fitzgerald University of Newcastle, UK
Robert Giegerich University of Bielefeld, Germany
Joshua Guttman MITRE, USA
John Hatcliff Kansas State University, USA
Mats Heimdahl University of Minnesota, USA
Joost-Pieter Katoen University of Twente, Netherlands
Jens Knoop TU Vienna, Austria
Joost Kok University of Leiden, Netherlands
Bernd Krämer FU Hagen, Germany
Liviu Miclea University of Cluj-Napoca, Romania
Alice Miller University of Glasgow, UK
Zebo Peng University of Linkping, Sweden
Alexander Petrenko ISPRAS, Russia
Mauro Pezzè University of Milano-Bicocca, Italy
Paolo Prinetto Politecnico Torino, Italy
Franz Rammig University of Paderborn, Germany
Konstantinos Sagonas University of Uppsala, Sweden
Bernhard Steffen University of Dortmund, Germany
Murat Tanik University of Alabama, USA
Marcel Verhoef Chess, Netherlands

VIII Organization

Gottfried Vossen University of Mnster, Germany
Hai Wang University of Manchester, UK
Alan Wassyng McMaster University, Canada
Michel Wermelinger Universidade of Nova de Lisboa, Portugal
Martin Wirsing LMU München, Germany
Keijiro Yamaguchi NEC, Japan
Lenore Zuck NYU, USA

Organization Committee

Andreas Andreou University of Cyprus - Cyprus
Yannis Demopoulos University of Cyprus - Cyprus
Chryssis Georgiou University of Cyprus - Cyprus
Marios Mavronicolas University of Cyprus - Cyprus

Industrial Board

Mirko Conrad DaimlerChrysler AG
Limor Fix Intel, Haifa, Israel (Hardware)
Mike Hinchey NASA, USA (Space and Robotics)
Manfred Reitenspiess Fujitsu-Siemens, Munich Germany

(Telecommunication Platforms)
Yaron Wolfsthal IBM, Haifa Israel (HW/SW Systems)
Jianli Xu Nokia
Yervant Zorian Virage Logic USA (HW Systems)

Reviewers

Robby
P. Abdulla
E. Abraham
J. Andersson
R. Banach
D. Clarke
J. Deneux
J. Hatcliff
J. Ivers
J. Jacob
D. Kroening

B. Lisper
J. Rehof
M. Schordan
A. Stam
B. Steffen
L. v.d. Torre
A. Wall
Q. Yi
G. Zavattaro
W. Zimmermann

Table of Contents

Interaction and Coordination of Tools for Structured Data 1
Farhad Arbab, Joost N. Kok

Modelling Coordination in Biological Systems . 9
Dave Clarke, David Costa, Farhad Arbab

A Rule Markup Language and Its Application to UML . 26
Joost Jacob

Using XML Transformations for Enterprise Architectures . 42
A. Stam, J. Jacob, F.S. de Boer, M.M. Bonsangue, L. van der Torre

Classification and Utilization of Abstractions for Optimization 57
Dan Quinlan, Markus Schordan, Qing Yi, Andreas Saebjornsen

On the Correctness of Transformations in Compiler Back-Ends 74
Wolf Zimmermann

Accurate Theorem Proving for Program Verification . 96
Byron Cook, Daniel Kroening, Natasha Sharygina

Designing Safe, Reliable Systems Using Scade . 115
Parosh Aziz Abdulla, Johann Deneux, Gunnar St̊almarck, Herman Ågren,
Ove Åkerlund

Decreasing Maintenance Costs by Introducing Formal Analysis of Real-Time
Behavior in Industrial Settings . 130

Anders Wall, Johan Andersson, Christer Norström

Static Timing Analysis of Real-Time Operating System Code 146
Daniel Sandell, Andreas Ermedahl, Jan Gustafsson, Björn Lisper

A Case Study in Domain-Customized Model Checking for Real-Time
Component Software . 161

Matthew Hoosier, Matthew B. Dwyer, Robby, John Hatcliff

Models for Contract Conformance . 181
Sriram K. Rajamani, Jakob Rehof

Author Index . 197

Interaction and Coordination of Tools for

Structured Data

Farhad Arbab1,2 and Joost N. Kok2

1 Center for Mathematics and Computer Science (CWI)
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

farhad@cwi.nl
2 Leiden Institute for Advanced Computer Science (LIACS), Leiden University

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
{farhad, joost}@liacs.nl

Abstract. This paper has an introductory nature. It sets the scene for
the three papers in the thematic session “Structured Data Tools”. We
discuss interaction and coordination in general and look more specifically
at the XML data format and the dataflow driven coordination language
Reo.

1 Introduction

The size, speed, capacity, and price of computers have all dramatically changed
in the last half-century. Still more dramatic are the subtle changes of the society’s
perception of what computers are and what they can, should, and are expected
to do. Clearly, this change of perception would not have been possible without
the technological advances that reduced the size and price of computers, while
increasing their speed and capacity. Nevertheless, the social impact of this change
of perception and its feedback influence on the advancement of computer science
and technology, are too significant to be regarded as mere by-products of those
technological advances.1

The social perception of what computers are (to be used for) has evolved
through three phases:

1. Computers as fast number crunchers
2. Computers as symbol manipulators
3. Computers as mediators and facilitators of interaction

The general faster-cheaper-smaller trend of computer technology aside, two
specific transformations marked the above phase-transitions. The advent of fast,
large main memory and mass-storage devices suitable to store and access the
significantly more voluminous amounts of data required for non-numerical sym-
bol manipulation made symbolic computation possible. The watershed that set
forth the second transition was the availability of affordable computers and dig-
ital telecommunication that together fueled the explosion of the Internet.
1 See [3] for an expanded version of this discussion.

T. Margaria and B. Steffen (Eds.): ISoLA 2004, LNCS 4313, pp. 1–8, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 F. Arbab and J.N. Kok

We are still at the tail-end of the second transition (from symbolic compu-
tation to interaction) and trying to come to terms with its full implications on
computer science and technology. This involves revisiting some established areas,
such as concurrency, from a new perspective, and leads to a specific field of study
concerned with theories and models for coordination of interactive concurrent
computations. Moreover, it presents new challenges in software engineering to
address coarse-grain reuse in component based software and to tackle architec-
tures of complex systems whose organization and composition must dynamically
change, e.g., to accommodate mobility, or evolve and be reconfigured to adapt
to short- as well as long-term changes in their environment.

Two key concepts emerge as core concerns: interaction and coordination.
While researchers have worked on both individually in the past, we propose
that their combination deserves still more serious systematic study because it
offers insight into new approaches to coordination of cooperation of interact-
ing components that comprise such complex systems. In our thematic session
we concentrate on interaction of components through dataflow. This has two
aspects: the nature of data such that they are suited for interaction and the
coordination of components. First we put interaction and coordination in a con-
text and later we focus on the XML format and the Reo coordination language,
being the topics of the papers that belong to this thematic session.

The overview of the rest of the paper is as follows. We discuss interaction and
coordination in two separate sections. In these two sections we first treat general
issues and then focus on the data aspects. In the final section, we briefly discuss
the three papers of the thematic session.

2 Interaction

In the real world, computer systems and databases contain data in incompatible
formats. However, interaction implies data exchange between such systems and
this exchange has been one of the most time-consuming challenges for developers.
Converting the data to a common format can greatly reduce this complexity and
create data that can be read by many different types of applications.

Traditional database systems rely on an old model: the relational data model.
When it was proposed in the early 1970’s by Codd, the relational model gen-
erated a revolution in data management. In this model data are represented as
relations in first-order structures and queries as first-order logic formulas. It en-
abled researchers and implementors to separate the logical aspect of the data
from its physical implementation. Thirty years of research and development fol-
lowed, and they led to today’s relational database systems.

The advent of the Internet led to a variety of new generation data management
applications for which the relational model is no longer suited. For instance, data
are now frequently accessed through the Web, is distributed over several sources,
and resides there in various formats (e.g., HTML, XML, text files, relational).
To accommodate all forms of data and access to them, the database research
community has introduced the “semi-structured data model”, where data are

Interaction and Coordination of Tools for Structured Data 3

self-describing, irregular, and graph-like. The new model captures naturally Web
data, such as HTML, XML, or other application specific formats like trees and
molecules. (See Foundations of Semistructured Data, Dagstuhl Seminar [10].)
Data are typically subject to frequent changes in both structure, contents, and
interfacing.

As a general trend, data have become more structured: examples of structured
data include graphs, trees, molecules and XML documents. In many application
areas very large quantities of structured data are generated. Handling these large
quantities of structured data requires rigorous data tools. Data tools are tools for
handling and expanding the use of such data, including those to acquire, store,
organize, archive and analyze data. It is important that these tools are efficient,
correct, flexible and reliable. Examples include tools for data conversion, data
integration, data security and data mining. Typical areas of application are in
health-care, bioscience, financial sector and e-commerce, interoperability and
integration.

In our thematic session we focus on XML which is representative of issues in
structured data tools. The features of XML that make it particularly appropriate
for data transfer are (see [16]):

1. XML uses plain text files.
2. XML can represent records, lists and trees.
3. XML is platform-independent.
4. the XML format is self-documenting in that it describes the structure and

field names as well as the syntax for specific values.
5. XML is used as the format for document storage and processing, its hierar-

chical structure being suitable for most types of documents.
6. XML has already been in use (as SGML) for longer than a decade, and is

very popular by itself, with extensive available experience and software.

The XML format is not only a common format, but it also provides a basis
for the coordination of systems.

3 Coordination

Coordination languages, models, and systems constitute a recent field of study
in programming and software systems, with the goal of finding solutions to the
problem of managing the interaction among concurrent programs. Coordination
can be defined as the study of the dynamic topologies of interactions, and the
construction of protocols to realize such topologies that ensure well-behavedness.
Analogous to the way in which topology abstracts away the metric details of
geometry and focuses on the invariant properties of (seemingly very different)
shapes, coordination abstracts away the details of computation, and focuses on
the invariant properties of (seemingly very different) programs. As such, coordi-
nation focuses on patterns that specifically deal with interaction.

The inability to deal with the cooperation model of a concurrent application
in an explicit form contributes to the difficulty of developing working concur-
rent applications that contain large numbers of active entities with non-trivial

4 F. Arbab and J.N. Kok

cooperation protocols. In spite of the fact that the implementation of a complex
protocol is often the most difficult and error prone part of an application devel-
opment effort, the end result is typically not recognized as a “commodity” in
its own right, because the protocol is only implicit in the behavior of the rest of
the concurrent software. This makes maintenance and modification of the coop-
eration protocols of concurrent applications much more difficult than necessary,
and their reuse next to impossible. Coordination languages can be thought of as
the linguistic counterpart of the ad hoc platforms that offer middle-ware support
for software composition.

Coordination languages are most relevant specifically in the context of open
systems, where their participants are not fixed at the outset. Coordination is also
relevant in design, development, debugging, maintenance, and reuse of all con-
current systems, where it addresses a number of important software engineering
issues. The current interest in constructing applications out of independent soft-
ware components necessitates specific attention to the so-called glue-code. The
purpose of the glue-code is to compose a set of components by filling the signifi-
cant interface gaps that naturally arise among them, simply because they are not
(supposed to be) tailor-made to work with one another. Using components, thus,
means understanding how they individually interact with their environment, and
specifying how they should engage in mutual, cooperative interactions in order
for their composition to behave as a coordinated whole. Many of the core issues
involved in component composition have already been identified and studied as
key concerns in work on coordination. Coordination models and languages ad-
dress such key issues in Component Based Software Engineering as specification,
interaction, and dynamic composition of components. Specifically, exogenous co-
ordination models (discussed later in this section) and languages provide a very
promising basis for the development of effective glue-code languages because
they enable third-party entities to wield coordination control over the interac-
tion behavior of mutually anonymous entities involved in a collaboration activity
from outside of those participating entities.

One of the best known coordination languages is Linda [9,13], which is based
on the notion of a shared tuple space. The tuple space of Linda is a centrally
managed resource and contains all pieces of information that processes wish to
communicate with each other. Linda processes can be written in any language
augmented with Linda primitives. There are only four primitives provided by
Linda, each of which associatively operates on a single tuple in the tuple space.
The primitive in searches the tuple space for a matching tuple and deletes it;
out adds a tuple to the tuple space; read searches for a matching tuple in the
tuple space; and eval starts an active tuple (i.e., a process). Numerous other
coordination models and language extensions, e.g., JavaSpace of Jini [12,14], are
based on Linda-like models.

Besides the “generative tuple space” of Linda, a number of other interesting
models have been proposed and used to support coordination languages and sys-
tems. Examples include various forms of “parallel multiset rewriting” or “chem-
ical reactions” as in Gamma [6], models with explicit support for coordinators

Interaction and Coordination of Tools for Structured Data 5

as in Manifold [4,8], “software bus” as in ToolBus [7], and a calculus of generali-
zed-channel composition as in Reo [2]. A significant number of these models and
languages are based on a few common notions, such as pattern-based, associative
communication [1], to complement the name-oriented, data-based communica-
tion of traditional languages for parallel programming. See [15] for a comprehen-
sive survey of coordination models and languages.

Some of the important properties of different coordination languages, mod-
els, and systems become clear when we classify them along the following three
dimensions: focus of coordination, locus of coordination, and modus of coordi-
nation. Although a detailed description of most individual coordination models
and languages is beyond the scope of our interest in this paper, an overview of
the dimensions of this classification helps to clarify at a more abstract level the
issues they address, and thus the concerns of coordination as a field.

Focus of coordination refers to the aspect of the applications that a coordina-
tion model, language, or system emphasizes as its primary concern. Significant
aspects used by various models as their focus of coordination include data, con-
trol, and dataflow, yielding data-oriented, control-oriented, and dataflow-oriented
families of coordination models, languages, and systems.

For instance, Linda uses a data-oriented coordination model, whereas Mani-
fold is a control-oriented coordination language. The activity in a data-oriented
application tends to center around a substantial shared body of data; the appli-
cation is essentially concerned with what happens to the data. Examples include
database and transaction systems such as banking and airline reservation appli-
cations. On the other hand, the activity in a control-oriented application tends
to center around processing or flow of control and, often, the very notion of the
data, as such, simply does not exist; such an application is essentially described
as a collection of activities that genuinely consume their input data, and sub-
sequently produce, remember, and transform “new data” that they generate by
themselves. Examples include applications that involve work-flow in organiza-
tions, and multi-phase applications where the content, format, and/or modality
of information substantially changes from one phase to the next.

Dataflow-oriented models, such as Reo, use the flow of data as the only (or
at least the primary) control mechanism. Unlike data-oriented models, dataflow
models are oblivious to the actual content, type, or structure of data and are
instead concerned with the flow of data from their sources to their destinations.
Unlike control-oriented models, events that trigger state transitions are limited
to only those that arise out of the flow of data.

Locus of coordination refers to where coordination activity takes place, clas-
sifying coordination models and languages as endogenous or exogenous. Endoge-
nous models and languages, such as Linda, provide primitives that must be
incorporated within a computation for its coordination. In applications that use
such models, primitives that affect the coordination of each module are inside
the module itself. In contrast, exogenous models and languages, such as Manifold
and Reo, provide primitives that support coordination of entities from without.

6 F. Arbab and J.N. Kok

In applications that use exogenous models primitives that affect the coordination
of each module are outside the module itself.

Modus of coordination refers to how coordination is carried out in a model or
language: how the coordination rules of an application are defined and enforced.
The repertoire of coordination rules supported by a coordination model or lan-
guage can be very different in its nature than that of another. Some, e.g., Linda,
Manifold, and Reo, provide primitives for building coordination rules. Others
propose rule-based languages where rules act as trigger conditions for action or as
constraints on the behavior of active agents to coordinate them in a system. One
way or the other, coordination rules provide a level of abstraction which hides
much of the complexity of coordination activity from programmers. Models that
use more declarative coordination rules can support increased reasoning power.

In our thematic session we consider the Reo language. Reo is a channel-based
exogenous coordination model wherein complex coordinators, called connectors,
are compositionally built out of simpler ones. The simplest connectors in Reo
are a set of channels with well-defined behavior supplied by users [2]. The em-
phasis in Reo is on connectors, their behavior, and their composition, not on
the entities that connect, communicate, and cooperate through them. The be-
havior of every connector in Reo imposes a specific coordination pattern on the
entities that perform normal I/O operations through that connector, without
the knowledge of those entities. This makes Reo a powerful “glue language” for
compositional construction of connectors to combine component instances into
a software system and exogenously orchestrate their mutual interactions.

Reo’s notion of components and connectors is depicted in Figure 1, where
component instances are represented as boxes, channels as straight lines, and
connectors are delineated by dashed lines. Each connector in Reo is, in turn,
constructed compositionally out of simpler connectors, which are ultimately com-
posed out of primitive channels.

For instance, the connector in Figure 1.a may in fact be a flow-regulator (if
its three constituent channels are of the right type as described under write-cue
regulator, below, and shown in Figure 2.a). Figure 1.a would then represent a
system composed out of two writer component instances (C1 and C3), plus a
reader component instance (C2), glued together by our flow-regulator connector.
Every component instance performs its I/O operations following its own timing

(b) a 6−way connector(a) a 3−way connector (c) two 3−way connectors and a 6−way connector

C4

C5

C6C2

C3

C1C4

C5

C6C3

C2

C1C2

C3

C1

Fig. 1. Connectors and component composition

Interaction and Coordination of Tools for Structured Data 7

da b,e,c

f b

a c
a d

g j

b,e,c

h,f,i

a b dc

o
Sequencer

a

b c a

b c

Sequencer

a db c

e f g

Fig. 2. Examples of connector circuits in Reo

and logic, independently of the others. None of these component instances is
aware of the existence of the others, the specific connector used to glue it with the
rest, or even of its own role in the composite system. Nevertheless, the protocol
imposed by our flow-regulator glue code (see [2] and [5]) ensures that a data
item passes from C1 to C2 only whenever C3 writes a data item (whose actual
value is ignored): the “tokens” written by C3, thus, serve as cues to regulate
the flow of data items from C1 to C2. The behavior of the connector, in turn, is
independent of the components it connects: without their knowledge, it imposes
a coordination pattern among C1, C2, and C3 that regulates the precise timing
and/or the volume of the data items that pass from C1 to C2, according to the
timing and/or the volume of tokens produced by C3. The other connectors in
Figure 1 implement more complex coordination patterns.

Figure 2.a shows a write-cue regulator connector circuit built out of two syn-
chronous channels and a synchronous-drain, whose behavior is analogous to that
of a transistor. Figures 2.b and c show this transistor used to construct more
complex Reo connector circuits, specifically, two barrier-synchronizer circuits for,
respectively, two- and three-pairs of readers and writers. Figure 2.d shows a Reo
connector circuit for an alternator. Figure 2.e shows a sequencer circuit, and
Figures 2.f and g show more complex alternator circuits that use this sequencer
as a component. See the first paper in this thematic session for a brief overview
of Reo and [2] for more details on Reo channels and these and other examples.

There are three papers in the thematic session: the first presents an application
of the Reo coordination language; the second paper describes a structured data
transformation tool; and the third paper discusses the application of this tool in
enterprise architectures. We discuss them in turn.

– Modeling Coordination in Biological Systems. The Reo coordination lan-
guage is used for modeling in systems biology. Various forms of coordination
in living cells are discussed and metabolization of galactose is modeled.

– A Rule Markup Language and its application to UML. A data transformation
tool for XML, called RML, is introduced. RML can be use for rule-based
transformations of XML documents. RML rules are stated in XML and are

8 F. Arbab and J.N. Kok

intended to be mixed with problem-domain specific XML, using the so-called
XML wild-card elements.

– Using XML Transformations for Enterprise Architectures. An enterprise ar-
chitecture can be described in an XML document. Using the RML tool,
above, different views of this data can be obtained. In the spirit of coordina-
tion, the model viewers used are independent of the architectural languages.

We think that these three papers give a good feeling for the type of research in
interaction and coordination of tools for structured data. Such tools are needed
for computers as mediators and facilitators of interaction.

References

1. J.-M. Andreoli, P. Ciancarini, and R. Pareschi. Interaction Abstract Machines. In
Trends in Object-Based Concurrent Computing, pages 257–280. MIT Press, 1993.

2. F. Arbab. Reo: A channel-based coordination model for component composition.
Mathematical Structures in Computer Science, 14(3):329–366, June 2004.

3. F. Arbab. Coordination of interacting concurrent computations. In [11]. 2005.
4. F. Arbab, I. Herman, and P. Spilling. An overview of Manifold and its implemen-

tation. Concurrency: Practice and Experience, 5(1):23–70, February 1993.
5. F. Arbab and J.J.M.M. Rutten. A coinductive calculus of component connectors.

In D. Pattinson M. Wirsing and R. Hennicker, editors, Recent Trends in Algebraic
Development Techniques, Proceedings of 16th International Workshop on Algebraic
Development Techniques (WADT 2002), volume 2755 of Lecture Notes in Computer
Science, pages 35–56. Springer-Verlag, 2003.

6. J.-P. Banâtre and D. Le Métayer. Programming by multiset transformations. Com-
munications of the ACM, 36(1):98–111, January 1993.

7. J. Bergstra and P. Klint. The ToolBus Coordination Architecture. In P. Cian-
carini and C. Hankin, editors, Proc. 1st Int. Conf. on Coordination Models and
Languages, volume 1061 of Lecture Notes in Computer Science, pages 75–88, Ce-
sena, Italy, April 1996. Springer-Verlag, Berlin.

8. M.M. Bonsangue, F. Arbab, J.W. de Bakker, J.J.M.M. Rutten, A. Scutellá, and
G. Zavattaro. A transition system semantics for the control-driven coordination
language Manifold. Theoretical Computer Science, 240:3–47, 2000.

9. N. Carriero and D. Gelernter. Linda in context. Communications of the ACM,
32(4):444–458, 1989.

10. Dagstuhl. http://www.dagstuhl.de/05061/.
11. D. Goldin, S. Smolka, and P. Wegner, editors. Interactive Computation: The New

Paradigm. Springer-Verlag, 2005. (to appear).
12. Jini. http://www.sun.com/jini.
13. W. Leler. Linda meets Unix. IEEE Computer, 23:43–54, February 1990.
14. S. Oaks and H. Wong. Jini in a Nutshell. O’Reilly & Associates, 2000.
15. G.A. Papadopoulos and F. Arbab. Coordination models and languages. In

M. Zelkowitz, editor, Advances in Computers – The Engineering of Large Systems,
volume 46, pages 329–400. Academic Press, 1998.

16. XML. http://www.w3schools.com/xml.

Modelling Coordination in Biological Systems

Dave Clarke, David Costa, and Farhad Arbab

CWI
PO Box 94079, 1090 GB Amsterdam

The Netherlands
{dave, costa, farhad}@cwi.nl

Abstract. We present an application of the Reo coordination paradigm
to provide a compositional formal model for describing and reasoning
about the behaviour of biological systems, such as regulatory gene net-
works. Reo governs the interaction and flow of data between components
by allowing the construction of connector circuits which have a precise
formal semantics. When applied to systems biology, the result is a graphi-
cal model, which is comprehensible, mathematically precise, and flexible.

1 Introduction

Within a biological system, complex biological pathways, the interconnection be-
tween genes and proteins and other chemical reactions within organisms, form
the basic fabric of life. Systems biology aims to integrate information about bio-
logical entities and their relationships with the aim of understanding the complex
metabolic networks and the rôle of genes within them. Beginning with incom-
plete information about a system, biologists produce a mathematical model of
their system, which is ultimately used to predict the behaviour of the system.
By testing their model against experimental data, biologists can produce suc-
cessively more accurate models. But as biologists study larger systems, their
modelling technology is proving to be insufficient. What systems biologists need
are formal techniques to describe reaction networks, giving, for example, an
algebraic description of their behaviour, enabling abstraction from molecular
actions, if desired. The models should enable composition of larger models from
smaller ones, and tools should be provided for analysing the behaviour of these
models under a variety of boundary conditions [1]. A number of models have
recently been proposed to fill this gap. Frequently, these models stem from the
study of concurrency theory, which traditionally provides theoretical founda-
tions for concurrent and distributed computer systems. Some models are based
on process calculi [2,3,4,5,6,7,8], whereas others adopt circuit or network-based
formalisms [9,10,11,12]. An immediate advantage of these approaches to mod-
elling is that the extensive theory that exists for reasoning about concurrency can
be applied to biological systems (for example [13]). Furthermore, by providing
formally precise, executable models of biological systems, these approaches repre-
sent a promising path toward understanding highly complex biological systems.

An alternative approach is to use a framework which abstracts away from
the behaviour of agents and focus on their interaction both at a primitive level

T. Margaria and B. Steffen (Eds.): ISoLA 2004, LNCS 4313, pp. 9–25, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

10 D. Clarke, D. Costa, and F. Arbab

and across the entire system. Understanding biological systems requires under-
standing, for example, the gene networks which regulate protein production
through the activation and suppression of various enzymes and other genes.
Often mere competition for molecules is the means by which nature achieves
organisation through distributed control [1]. In their most general setting, regu-
lation, activation, suppression, competition, and control are studied within the
inter-disciplinary field Coordination Theory [14].

The Reo coordination model for coordinating software components [15] also
falls within this general theory. Rather than focusing on what components (or
processes) do in isolation, coordination models, including Reo, focus on the com-
position of components and their interaction, generally by governing the flow of
data between components. The coordination layer prescribes/describes the inter-
action between the components. This change of focus enables one to understand
a system at a higher level of abstraction, focusing on the interaction and control
aspects rather than on the entities being controlled. It is from this perspective
that we endevour to contruct models for use in systems biology. Reo coordinates
components using connectors composed of primitive channels. These connectors
can be seen as circuits that capture the interaction, data flow, synchronisation,
and feedback among components. Circuits have a graphical representation and
precise semantics [16,17], and allow the composition of models of large systems
out of smaller ones. This paper applies Reo to modelling biological systems.

2 Evidence of Coordination in Biological Systems

In biological systems the presence of coordination mechanisms is evident at dif-
ferent levels and in different ways [18,14,19,20]. In general, coordination takes
place in a highly distributed manner, but we can break it down into a number
of categories: inter-cellular coordination, boundary coordination, intra-cellular
coordination, and gene coordination.

Inter-cellular coordination. A cell is coordinated via interaction with its environ-
ment. This can include interaction with other cells. All cells receive and respond
to signals from their surroundings. The simplest bacteria sense and swim toward
high concentrations of nutrients, such as glucose or amino-acids. Many unicellular
eukaryotes also respond to signalling molecules secreted by other cells, allowing
cell-cell communication. It is, however, in multi-cellular organisms where cell-cell
communication reaches its highest level of sophistication. The behaviour of each
individual cell in multi-cellular plants and animals must be carefully regulated to
meet the needs of the organism as a whole. The function of the many individual
cells in a multi-cellular organism is integrated and coordinated via a variety of
signalling molecules that are secreted on the surface of one cell and bound to a
receptor present on another cell.

Boundary coordination. A cell’s internal behaviour is stimulated or, more gener-
ally, regulated via interaction on its boundary. Most cell surface receptors stim-
ulate target enzymes which may be either directly linked or indirectly coupled

Modelling Coordination in Biological Systems 11

to receptors. A chain of reactions transmits signals from the cell surface to a
variety of intra-cellular targets. The targets of such signalling pathways fre-
quently include factors that regulate gene expression. Intra-cellular signalling
pathways thus connect the cell surface to the nucleus, leading to changes in gene
expression—the internal coordinator of cell behaviour—in response to extra-
cellular stimuli. Changes in expression lead to different metabolic pathways.

Intra-cellular coordination. Intra-cellular reactions regulate all aspects of cell
behaviour including metabolism, movement, proliferation, survival and differ-
entiation. Metabolism is a highly integrated process. It includes catabolism, in
which the cell breaks down complex molecules to produce energy, anabolism,
where the cell uses energy to construct complex molecules and perform other bi-
ological functions, and more general metabolic pathways consisting of a series of
nested and cascaded feedback loops which accommodate flexibility and adapta-
tion to changing environmental conditions and demands. Metabolism is regulated
through competition for resources, and by positive and negative feedback. Nega-
tive feedback (usually by end-product inhibition) prevents the over-accumulation
of intermediate metabolites and contributes to maintaining homeostasis—a sys-
tem’s natural desire for equilibrium.

Gene coordination. Gene behaviour plays the most significant coodination rôle,
ultimately being the central coordination mechanism within the entire cell. Gene
Regulatory Networks are a model which represents and emphasizes the genes’
rôle in all activities within a cell. Genes regulate and orchestrate the different
phases that comprise a metabolic pathway. A gene regulatory network can be
understood as a complex signalling network in which all coordination between
different cell entities is dictated dynamically by the genes directly, or indirectly
through coordination mechanisms such as suppression/negative regulation and
activation/positive regulation. Furthermore, gene behaviour is itself regulated via
the products of metabolism and via self-regulatory feedback.

3 Coordination in Reo

Coordination models and languages enable the control of the interaction behav-
iour of mutually anonymous components (or processes) from outside of those
components. Rather than allowing components to communicate directly, a co-
ordination model intervenes to regulate, inhibit, and direct the communication
and cooperation of independent components. Reo is a powerful channel-based
coordination model wherein complex coordinators, called connectors, are com-
positionally built out of smaller ones. Every connector in Reo imposes a specific
coordination pattern on the entities that interact via the connector [15].

The most primitive connectors in Reo are channels. A channel has exactly
two ends, each of which may be an input end, through which data enter, or an
output end, through which data leave the channel. Channels may have an input
end and an output end, or two input ends, or even two output ends. Reo places
no restriction on the behaviour of channels, as long as they support certain

12 D. Clarke, D. Costa, and F. Arbab

primitive operations such as I/O. This allows an open set of different channel
types to be used simultaneously together in Reo, each with its own policy for
synchronisation, buffering, ordering, computation, data retention/loss, etc. A
number of basic channels are [15]:

Sync. A synchronous channel is denoted . A data item is transmitted
through this channel when both a write on its input end and a take on its
output end are pending.

LossySync. A lossy synchronous channel is denoted . This channel be-
haves like a synchronous channel whenever a take on the output end is
pending. However, if a write is performed to its input end and no take is
pending, the input is performed, but data is lost and thus not transfered.

SyncDrain. A synchronous drain is denoted . A data item flows only
when writes are pending on each of its two input ends. The effect is to
synchronise the two writers. The data is lost.

SyncSpout. A synchronous spout is denoted . A data item flows only when
takes are pending on each of its two output ends. The effect is to synchronise
the two readers.

FIFO1. A FIFO1 channel has buffer of size one. A write to its input end can
succeed only if the buffer is empty, after which the written value is stored
in the buffer. Otherwise the writer blocks. A take from its output end only
succeeds if the buffer is full. A FIFO1 which is initially empty is denoted

, and one which is initially full is denoted 0 .

A Reo connector is a set of channel ends and their connecting channels or-
ganized in a graph of nodes and edges such that: zero or more channel ends
coincide on every node; every end coincides on exactly one node; and there is an
edge between two (not necessarily distinct) nodes if and only if there is a channel
whose two ends coincides on each of the nodes. The coincidence of channel ends
at a node has specific implications on the data flow among and through those
ends. There are three kinds of node, depending upon the kinds of coincident
ends. Input nodes have only input ends, output nodes have only output ends,
and mixed nodes have at least one of each. A component connected to an input
node may write to that node, which then acts as a replicator, copying the data
item to all ends coincident on the node. Similarly, a component connected to an
output node can take data if data is available on any one of the output ends
coincident on the node. Thus the node acts as a non-deterministic merger of
the coincident output ends. A mixed node acts like a self-contained pumping
station, combining the behaviour of an output node (merger) and an input node
(replicator), by non-deterministically taking a suitable data item offered by any
one of its coincident output ends and replicating it to all of its coincident input
ends. This operation succeeds only when all the output ends attached to the
node are able to accept the data. Graphically nodes are represented using “•”.

The last feature of Reo we mention is encapsulation. This enables abstraction
of the details of a connector. It it representated as a box enclosing a circuit.

We now present an example of a Reo connector to illustrate the complex be-
haviour which can emerge through composition of simple channels. An exclusive

Modelling Coordination in Biological Systems 13

router is depicted in Figure 1, along with the shorthand mnemonic “⊗” which
we will use subsequently to represent the instances of this connector. Each data
item entering via node A will be synchronously passed to either node B or node
C, but not both, depending upon which of B and C first makes a request for
data. Ties are broken non-deterministically [16]. This behaviour emerges in an
non-obvious manner simply by composing together a few simple channels.

B C

A

A

B C

Fig. 1. (a) Exclusive Router connector and (b) the Mnemonic for its instances

Another example, used in our modelling, is a signaller. A signaller, see below,
can alternate between two different states, On or Off . When the signaller is in
the On state, an output can be emitted on the Signal channel end. In the Off
state, no output is emitted on the Signal channel end. The state of a signaller
is dictated by inputs on the channel ends labelled On and Off. An input on
On switches the signaller to the On state, if the state of the signaller is Off,
or is otherwise ignored. Similarly, an input on Off switches the signaller to the
state Off, or is ignored. A signaller, with initial state Off, is represented using
the following mnemonic:

On Off

Signal

Signaller

If the connection to either the On or Off end of a signaller is not known, we
omit the end from the diagram.

We now present the full Reo circuit implementing the signaller in terms of
primitive channels. This demonstrates the expressiveness of Reo. An alternative
is to supply a signaller as a primitive with its behaviour defined directly using
constraint automata.

Sequencer. The sequencer connector [15] (for 2 elements) is depicted in Fig-
ure 2. This connector is used to alternate the behaviour at nodes A and
B, given by the regular expression: (AB)∗. The implementation of the se-
quencer consists of a loop of FIFO1 buffers, of which all but one are empty,
which implements a token ring, enabling A and B to input data alternately.
The token is used to indicate which synchronous channels may pass data.
After A inputs data, the token moves to the other FIFO1 buffer, enabling
the B to input data. After B inputs, the sequencer returns to its initial state,
accepting A.

14 D. Clarke, D. Costa, and F. Arbab

SwitchConverter. The token passing loop which forms a part of the sequencer
can readily be adapted to act as the core of a switch that enables or inhibits
the flow of data, toggled by alternating values from a third channel end
(see the PreValve circuit, below). A more natural switch consists of two
separate channel ends, one corresponding to On, the other corresponding
to Off (repeated inputs in On or Off channel ends have no effect). The
SwitchConverter connector (Figure 2) converts the latter kind of switch into
the former (conversion in the other direction is also possible).

PreValve. The PreValve connector is depicted in Figure 2. Its initial state can
be either On or Off . When the connector is in the On state, data can be
inputed continually through the Flow channel end. In the Off state, not
data can be inputed. Data on the Toggle channel end toggles the connector
between its On and Off states. Note that, this circuit is the core of the Valve
connector in [16].

Signaller. The detailed implementation of this circuit is given in Figure 4.

4 Case Study: Galactose Utilization in Yeast

When a biologist wants to understand a system, such as the rôle of various
genes in regulating a metabolic pathway, they construct a model of the system.
Initially, the model is a black box. Through successive refinements, based on
experimental data, more accurate models are developed. The ultimate goal of
this process is to find models which are accurate enough to be used in a predictive
manner, giving an indication of how the system being modelled will behave under
conditions outside those covered by existing experimental data.

In this section, we outline an approach to developing models using Reo, and
apply it in a case study, the biological system Galactose Utilization in Yeast [21].
In particular, we focus on the process of metabolizing Galatose to Glucose-6-P
(Figure 5). The system’s behaviour can be described as following [21]:

Yeast metabolizes galactose through a series of steps involving the GAL2
transporter and enzymes produced by GAL1, 7, 10, and 5. These genes
are transcriptionally regulated by a mechansim consisting primarily of
GAL4, 80, and 3. GAL6 produces another regulatory factor thought to
repress the GAL enzymes in a manner similar to GAL80.

In order to produce a model, we need to determine the level of abstraction at
which the model will work. The finite set of biological entities (or just entity) that
play a rôle in a biological system (or process) is called its domain. Entities can
be any cell organelle (e.g., mitochondrion, ribossome), suborganelle constituent
(e.g., gene), cell component (e.g., membrane), chemical, etc. For the present
case study, the domain consists of seven chemical substances (Gal-out, Gal-in,
Gal-1-P, UDP-Glu, UDP-Gal, Glu-1-P, Glu-6-P); five chemical reactions (Gal-
out→Gal-in (actually a membrane crossing), Gal-in→Gal-1-P, Gal-1-P+UDP-
Glu→Glu-1-P+UDP-Gal, UDP-Gal→UDP-Glu, Glu-1-P→Glu-6-P); and nine
genes (Gal1, Gal2, Gal3, Gal4, Gal5, Gal6, Gal7, Gal10, Gal80).

Modelling Coordination in Biological Systems 15

0

A B

Alternating on−off sequence

Sequencer (accepting on)

OffOn

Fig. 2. (a) Sequencer connector (A is enabled) (b) Switch Converter connector

x

0

Toggle

Flow

x

0

Toggle

Flow

Fig. 3. PreValve connector – State On and State Off

Prevalve (OFF)

Switch Converter
(accepting ON)

OffOn

Signal

Fig. 4. Signaller connector (Initial state is Off)

The next step in the modelling process is to instantiate each domain element
with a suitable Reo connector. This may be as simple as selecting the appropriate
connector from a library, or it may require a new model to be developed.

Genes as Signallers. The first step in modelling the behaviour of a gene as a Reo
connector is to extract the relevant characteristics and behavioural properties
that genes express in the biological system. Once this behaviour has been deter-
mined, up to the chosen level of abstraction, a Reo connector can be constructed
to match that behaviour.

Genes are segments of DNA within chromosomes which cells transcribe into
RNAs and translate, at least in part, into proteins. Genes affect behaviour within
the cell through the proteins which are produced. Some of the resulting proteins

16 D. Clarke, D. Costa, and F. Arbab

Fig. 5. The Galactose System. The top gray section depicts the chemical reactions
involved. The bottom part depicts the gene regulatory network coordinating the reac-
tions. From [21].

are enzymes which may regulate may catalyze a chemical reaction. Other pro-
teins are transcription factors which may regulate gene behaviour—though for
modelling purposes, these indirections are secondary issues.

We can abstract this behaviour using a signaller Reo connector, described in
Section 3. The nine genes can thus be modelled by signaller connectors.1

Chemicals. The five chemical substances that either act as reactants or products
of reaction are modelled as Reo nodes. More precisely, we introduce a node into
a connector and associate “data flowing through the node” with “the presence
of the chemical.” As we outline in Section 5, such nodes can be used to make
observations about these entities within the system.

Modelling Chemical Reactions. A chemical reaction can either be the synthesis
of a substance from two or more individual molecules coming together, or the
decomposition of a molecule into smaller molecules. A reaction may have multiple
reactants and multiple products, and may require the presence of an enzyme.

A chemical reaction can be modelled simply as a number of input channel ends
(one for each reactant), a number of output channel ends (one for each product)
and an input for the enzyme signal required to enable the reaction. A signal
on one of the reactants’ channel ends signals the availablitiy of a reactant. The
reaction proceeds whenever a signal is available on all reactants’ channel ends
and the enzyme channel end. This simultaneous availability is imposed using a
SynchDrain channel. A FIFO1 channel is placed in the circuit after the reaction
has occured to model the delay present in a chemical reaction.

Four chemical reactions (Gal-out→Gal-in, Gal-in→Gal-1-P, UDP-Gal→
UDP-Glu, Glu-1-P→Glu-6-P) need one reactant and output one product. The
1 An enzyme is a protein whose presence catalyzes (speed up) chemical reactions

without being itself consumed. It can be modelled using a signaller. For simplicity,
we have folded enzyme behaviour into that of the gene which produces it.

Modelling Coordination in Biological Systems 17

ProductsReactants

Enzyme

Enzyme

ProductsReactants

Fig. 6. (a) Connector for Complex Reactions with Enzyme and (b) its Mnemonic

remaining reaction (Gal-1-P+UDP-Glu→Glu-1-P+UDP-Gal) needs two reac-
tants and outputs two products. These are both modelled using variants of the
connector in Figure 6.

Now that we have a domain and the behaviour of the entities which it com-
prises, we can start to build a Reo model. To do so, we must ask a second ques-
tion: how de we construct models of complex systems which comprise multiple
biological entities?

We begin by determining the relationship between the entities which describes,
for example, that one entity activates, or more generally, regulates, another en-
tity. This also includes basic connections between chemical reactions where the
product of one entity is a reactant of another. We also identify boundary entities
whose behaviour does not depend on and which is not regulated by other enti-
ties that we are modelling. For our example, the boundary entities include two
elements Gal-out and Glu-6-P. Entities which are not on the boundary are con-
sidered to be internal, and their behaviour typically depends on or is regulated
entirely by the activity of other entities in the model.

Each of the interactions between entities must be modelled in Reo. Usually,
this consists simply of composing the connectors involved in the right manner.
In our model, we determine the relationship between entities using Figure 5.

Composition: Activation/Presence, Suppression/Absence. The action of a gene
is to provide the proteins vital to a cell. An enzyme catalyzes chemical reactions,
and transcription factors regulate (activate or suppress) gene activity. The be-
havior of activation and suppression can be modelled by composing the signaller
connector which models the gene, enzyme, or transcription factor with the cir-
cuit modelling the entity which it regulates. To model activation/presence (or

Off

Signal

ENZYME

OnOn Off

GENE
Signal

(Enzyme)
Signaller

OnOff

Signal

Fig. 7. (a) A Gene activates an Enzyme. (b) Self-Regulation using Feedback

18 D. Clarke, D. Costa, and F. Arbab

suppression/absence) by one signaller on some target signaller, the Signal chan-
nel end of the first signaller is connected to the On (or Off) channel end of the
target signaller, as depicted in Figure 7(a). Multiple sources of activation or sup-
pression present in a system can simply be modelled by merging signals from
various sources via a Reo node.

Composition: Self-regulation. Self-regulation means that a biological entity di-
rectly or indirectly is regulated by itself. Products of the biological process influ-
ence, either positively or negatively, the process which created those products.
To model self-regulation, we use feedback in a Reo circuit. A simple example is
presented in Figure 7(b). This figure models a gene whose products (the signal)
cause it to turn itself off. For more complex situations where the regulation de-
pends upon time, reaction rates, or concentration, may require timed Reo circuits
to be more accurately modelled [22].

Composition: Reaction Pathways, Reversible Reactions. Composition permits
the building of chains of chemical reactions, in which the product of one reaction
is the reactant of another. Reaction chains are the fundamental elements of
biological pathways, as we discussed in Section 2. Reversible reactions can also
be modelled by suitably composing the forward and reverse reactions together.
The reactants involved can either become reactants in the reaction going in the
other direction, or be used by another reaction in the pathway.

The Composed System. We can now compose all of our entities together. Fig-
ure 5 informs whether the regulation from a gene is positive or negative. This
information is used to determine how to connect genes together, by connecting
a postive factor to the On port of the entity it regulates positively, and so on, as

Off

On

On

On

Galactose(in)
Crosses Membrane

On On On OnGal2

Gal80

Gal3

Gal6

Gal1

On

Off

Gal10 Gal7 Gal5

On

Gal4

G
lucose−

6−
PG

al
ac

to
se

(o
ut

)

Galactose−1−P

UDP−Glucose UDP−Galactose

Glucose−1−P

Fig. 8. Galactose Metabolism modelled using Reo
Boxes denote signallers—unknown activation/suppression relationships are omitted.
Ovals denote chemical reactions. The significant rôle Gal4 plays is also highlighted.
Exclusive routers ⊗ model that each signal is used once.

Modelling Coordination in Biological Systems 19

outlined above. Finally, the appropriate gene action is connected to each chem-
ical reaction, and these reactions are chained together. The result is the circuit
in Figure 8.

5 Reasoning About Reo Models

Having constructed a Reo model, we need techniques for reasoning about its
behaviour. This will include checking whether the model fits the experimental
data, and determining more general properties, such as the presence of stable
states or cycles of states [23] within the model, and understanding the rela-
tionships (both causality and cooperation) between various entities. Our model
permits reasoning about the relationship between the input and output behav-
iour of boundary entities. Various behaviours can be determined by perturbing
the boundary—by setting up different boundary conditions, the behaviour at the
remainder of the boundary can be determined. The idea can easily be extended
to model internal behaviour also, simply by exposing the internal entities of the
model on the boundary.

Reo semantics have been defined in terms of two different formalisms: (timed)
constraint automata2 and abstract behaviour types (not used here) [16,17]. In
addition, a number of modal logics and model checking algorithms have been
developed for specifying and checking properties of Reo circuits. This machinery
can be readily applied to biological models.

Constraint Automata. A constraint automaton [17] is an automaton which de-
scribes the sequence of possible observations on the boundary nodes of a Reo
connector. Such an automaton is defined over a set of names N = {A1, . . . , An},
which correspond to the input/output nodes. We present only “data-insensitive”
automata. A constraint automaton is a tuple A = (Q, N , −→, Q0), where Q is a
finite set of states; N is a finite set of names; −→ is a finite subset of Q×2N ×Q,
called the transition relation of A, written q

N→ p, with the constraint that N �= ∅;
and Q0 ⊆ Q is the set of initial states.

An automaton starts in an initial state q0 ∈ Q0. If the current state is q,
then the automaton waits until signals occur on some of the nodes Ai ∈ N . If
signals are observed at nodes A1 and A2, for example, and at no other nodes at

the same time, then the automaton may take a transition q
{A1,A2}−→ p. A run of

an automaton is a sequence of non-empty subsets of N , (N0, N1, N2, . . .) which
corresponds to a series of signals occuring simultaneously at the nodes of the
Reo connector which the automaton models.

There are two important constructions on constraint automaton. The first
construction, product, denoted A �� B, takes two constraint automata and pro-
duces an automaton which is the result of “joining” the actions on names shared
between the two automata. This captures the composition of Reo circuits, though

2 Timed constraint automata play no role in the models presented in this paper. We
anticipate that time will play be required to produce more refined models.

20 D. Clarke, D. Costa, and F. Arbab

the details are too involved to go into here. This operation is similar in operation
to the join operation on relational databases [17].

The second construction, hiding, denoted ∃[C]A, takes a name, C, and a con-
straint automaton, A, and produces an automaton where all behaviour at node C
is internalised. Observations about C are no longer possible. Paths involving just
label {C} are compressed to eliminate empty paths in the resulting automaton.
The resulting automaton has the same behaviour on the other nodes.

Projection to Subsystem of Interest. The first step when reasoning about a Reo
circuit is to construct a constraint automaton for it by constructing the prod-
uct of the automata which model its channels and nodes. Assume now that the
resulting automaton, A, has nodes {A, B, C, D, E}, where {A, B, C} are on the
boundary and {D, E} are internal. At this stage, the constraint automaton con-
tains all the information which occurs on every node. Normally, hiding would
be used to produce an automaton which models the behaviour on the boundary
of the connector, i.e., ∃[D, E]A. However, the fact that the automaton resulting
from a product alone keeps the behaviour of the internal nodes exposed means
that we can use the automaton to reason about the internal behaviour, simply by
not hiding them. Thus if a different set of nodes is of interest to the reasoner, an
different automaton can be produced containing only those nodes. For example,
the automaton ∃[A, B, E]A can be used to understand the relationship between
boundary node C and internal node D.

Causality and Cooperation Analysis. A temporal logic called Time Scheduled-
Data-Stream Logic (TSDSL) has been defined, along with model checking al-
gorithms, for the timed version of constraint automata [22]. Scheduled-stream
logic (SSL) is the obvious simplification of TSDSL, removing references to time
and data. Its formulae over a node set N are given by the grammar:

φ ::= true | φ1 ∧ φ2 | ¬ψ | 〈〈α〉〉ψ | ψ1 U ψ2

α ::= N | α1 ∨ α2 | α1 ∧ α2 | α1; α2 | α∗

N is a nonempty subset of N . α is a so-called schedule expression, giving a regular
expression for finite sequences of subsets of N , corresponding to a sequence
of “events”. The formula 〈〈α〉〉ψ states that each run has a prefix in the set
described by α, with the suffix of the run satisfying ψ. Lastly, ψ1 U ψ2 is the
until modality from Linear Temporal Logic [24], stating that ψ1 must hold up
until the particular point which ψ2 holds. This logic can express properties of
runs of an automaton.

Biologists wish to pose a number of questions about a model. These often
take the general form, what happens if I press this button? More concretely,
they ask: what is the cause of gene Gal80 being on? Does Gal80 affect product
Galactose-1-P? Do Gal10 and Gal7 cooperate to produce Glucose-1-P? Is this
cooperation necessary? Can other entities produce Glucose-1-P? Can Glucose-1-
P be produced without Gal10? Given a constraint automata at the appropriate
level of abstraction, with nodes hidden to avoid “noise”, such questions can be

Modelling Coordination in Biological Systems 21

expressed in SSL as assertions over the visible node set. The validity of the
assertions can be determined using model checking. Now if, [[α]]ψ ≡ ¬〈〈α〉〉¬ψ,
false ≡ ¬true, and 〈〈¬Gal4〉〉ψ ≡ 〈〈N1 ∨ N2 ∨ · · ·〉〉ψ, where each Ni is a subset of
nodes that do not include Gal4, we can readily make assertions such as:

– 〈〈Gal4〉〉true – Gal4 must signal;
– [[Gal4]]false – Gal4 cannot signal;
– [[Gal80]]([[Gal4]]falseU〈〈Gal-out〉〉true) – after Gal80 has signalled, it is not

possible for Gal4 to signal until Galactose has been detected on the outside
of the cell;

– [[Gal4]]〈〈Gal80〉〉true — Gal4 turns Gal80 on;
– [[Gal80]]false ⇒ 〈〈¬Gal4〉〉[[Gal80]]false — only Gal4 turns Gal80 on;
– [[{Gal-in, Gal1}]]〈〈Gal-1-P〉〉true — Galactose detected inside the cell and the

signalling of Gal1 together are required to produce Galactose-1-P ; and
– [[Gal6 ∨ Gal80]][[Gal4]]false — the presence of either Gal6 or Gal80 can stop

Gal4 from signalling.

Many other questions regarding the states of a system and the pathways therein
can be formulated [13].

Generating Experiments from Models. An important reason for having accurate
models is to understand the cause and effects of disease and the effects of drugs
used to treat them. Models of biological systems will typically, at least initially,
be insufficiently accurate for the desired purpose. In order to refine a model, a
biologist will need hypotheses to test experimentally. To generate experiments
to test the behaviour of disease and drug treatment, in the case where they
act at a genetic level, the behaviour of the faulty gene or drug needs to be
modelled.

The first approach is to extract the consequent behaviour from an existing
Reo model. This is done by first characterising the behaviour of the faulty gene
or drug as streams of observations at some visible node in the model. The con-
straint automaton can then be reduced to one which contains only the streams
of observations selected by the biologist, and can then be analysed using the
techniques above to generate new hypotheses. This approach, however, is only
capable of producing behaviour which is already present in the model.

The second approach is to modify the Reo model by replacing the connector
corresponding to the entity of interest by a new connector which captures the
behaviour of the gene malfunction or the action of the drug introduced into the
system. The result is a new Reo model with the desired behaviour built-in.

In both cases, biologists can study a model by subjecting it to the reasoning
techniques described above, and use it to generate new hypotheses. An advantage
of using the first technique, in the event that the experimental data matches the
generated hypothesis, is that the behaviour is already included within the model,
thus no change to the model need be made. Otherwise, if either the experimental
data and the model do not match, or the second technique is used, appropriate
refinement of the model will be required.

22 D. Clarke, D. Costa, and F. Arbab

Simulation. Another technique available to biologists is simulation. We have
developed tools for simulating Reo circuits and constraint automata. These tools
are applicable to simulating biological systems.

Unsoundness, Incompleteness and Refinement. Modelling is an iterative process
whereby a model is refined, based on experimental data produced by a biologist,
to produce a more accurate model. A model can be inaccurate in two ways: it
can be unsound or incomplete. Soundness is the requirement that any behaviour
which the model exhibits is also exhibited by the biological system. Completeness
is the other way around, namely, that any behaviour observed in the real system
can be reproduced in the model. (These definitions are only relative to the level
of abstraction at which the modeller is operating.) Unsound (false positives) and
incomplete (false negatives) behaviour can be discovered by both probing the
model, and by testing hypotheses experimentally in the biological system, and by
comparing simulations against experimental results. When the predictions of the
model fail to match the results of the experiment, the model needs to be refined,
that is, to be adapted to preserve all previous sound behaviour and also capture
(or exclude) the new experimental observations. The refinement technique is re-
lated to software evolution in the presence of changing specifications. We do not
yet have a clear approach to using the “evidence” of unsoundness or incomplete-
ness in one model to produce a model which is more sound and complete.

6 Related Work

A number of researchers have expressed the need for larger scale models of
biological systems [1,21,25]. A number of different modelling approaches have
emerged to meet this need. Many depart dramatically from the traditional, small-
scale approaches based on differential equations and Monte Carlo simulation. In
this section, we give a taste of what these new approaches are.

A number of biological modeling languages are based on process calculi. The
pi-calculus has been used for modeling general reaction pathways [2], varia-
tions of the ambient calculus have modeled systems involving membrane in-
teractions [7,26,5], and special purpose calculi have been used to model protein-
protein interactions [4]. In some cases, a stochastic element is added, making
the models surprisingly accurate [27]. In general, this approach displays a lot of
flexibility, tools for reasoning about the models exist or can be readily adapted
from existing tools [13], and process calculi can be simulated.

Boolean Networks are one of the first models of gene regulatory network
behaviour [23]. These consist of a number of boolean states, corresponding to
whether genes are active or not, and a transition function which lock-step deter-
mines the next state. This process is iterated, and the network can be analysed
for stable cycles of states, called attractors. These models have the advantages of
simplicity and that they are readily simulated, but they are limited by their dis-
crete nature and their lock-step evaluation. Some of the limitations have been
overcome, by introducing probability to the model [28]. More advanced net-
work models break away from the lock-step evaluation of Boolean networks,

Modelling Coordination in Biological Systems 23

by incorporating continuous aspects, producing hybrid models which have both
discrete and continuous factors. Such models include the circuits of McAdams
and Shapiro [12] and models based on hybrid petri nets [11], and hybrid au-
tomata [29]. These models capture direct information flow within a biological
system, and computational techniques often exist to determine indirect relation-
ships and effects. Although more flexible than Boolean networks, more compu-
tational effort is required to analyse these models. Our approach sits somewhere
between these two, not being restricted to lock-step evaluation and being rela-
tively simple to analyze.

Coordination is a buzzword commonly used when talking about (systems)
biology [18], although, to our knowledge, this paper is the first attempt at ap-
plying a coordination model in this area. We expect to offer significant ad-
vantages because coordination, prevalent in Biology, is foremost in our model.
Compared with approaches based on other conconcurrent formalisms, our model
often works at a higher level of abstraction, because the coordination (synchro-
nisation among multiple entities, for example) needs to be programmed in a
process calculus model, whereas in Reo it comes for free, either directly in prim-
itive channels or in more complex examples via composition. Indeed, one of our
colleagues has demonstrated that it is trivial to embed an Elementary Petri-net
into Reo, whereas the reverse embedding was much more difficult [30]. Although
this embedding not been developed for hybrid Petri nets, or other circuit-based
models, its existence indicates that Reo can often express more with less.

7 Conclusions and Future Work

Fontana and Buss highlighted the need for an algebraic semantics of behaviour
suitable for biological systems [1]. We have proposed that Reo, and the coinduc-
tive semantics that underlies it, could provide a suitable framework. We believe
this to be the case, because Reo is open-ended, enabling channels with arbitrary
behaviour to be added, and it permits the compositional description of biological
processes by providing a set of connectors modelling the behaviour present in
biological systems. Furthermore, a number of formal tools have been developed
to specify and reason about connector behaviour.

The following brief roadmap will guide our future work. We have a number of
goals: developing a methodology both for building toolkits for modelling classes
of biological systems and for their refinement; extensively studying and validat-
ing the approach underlying this methodology in conjunction with biologists. It
would be great if biologists are willing to work with us to develop more accu-
rate models, so that we can provide better tools. In particular, we would like to
further apply the formal reasoning tools for Reo with time constraints, so that
we can provide models which include metric data such as rates, concentration,
delays [22].

Acknowledgements. To Nikolay Daikov, Dennis van der Vlies and Cândida Silva,
Jan Rutten and the anonymous referees, who gave detailed comments which
significantly helped improve the paper.

24 D. Clarke, D. Costa, and F. Arbab

References

1. Fontana, W., Buss, L.W.: The barrier of objects: From dynamical systems to
bounded organizations. In Casti, J., Karlqvist, A., eds.: Boundaries and Barriers.
Addison-Wesley (1996) 56–116

2. Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of bio-
chemical processes using the π-calculus process algebra. In: Pacific Symposium on
Biocomputing. Volume 6. (2001) 459–470

3. Danos, V., Krivine, J.: Formal molecular biology done in CCS-R. In: BIO-
CONCUR’03. Electronic Notes in Theoretical Computer Science, Marseille, France
(2003)

4. Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Science
325 (2004) 69–110

5. Danos, V., Pradalier, S.: Projective brane calculus. In: Computational Methods
in Systems Biology (CMSB’04). LNCS, Paris, France (2004)

6. Chang, B.Y.E., Sridharan, M.: PML: Towards a high-level formal language for bi-
ological systems. In: BIO-CONCUR’03. Electronic Notes in Theoretical Computer
Science, Marseille, France (2003)

7. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients:
An abstraction for biological compartments. Theoretical Computer Science, Special
Issue on Computational Methods in Systems Biology 325 (2004) 141–167

8. Kuttler, C., Niehren, J., Blossey, R.: Gene regulation in the pi calculus: Simulat-
ing cooperativity at the lambda switch. In: Workshop on Concurrent Models in
Molecular Biology. ENTCS, Elsevier (2004) BIO-CONCUR workshop proceedings.

9. Savageau, M.A.: Rules for the evolution of gene circuitry. In: Pacific Symposium
of Biocomputing. (1998) 54–65

10. Kitano, H.: A graphical notation for biochemical networks. BIOSILICO 1 (2003)
169–176

11. Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid Petri net representation of
gene regulatory network. In: Proc. Pacific Symposium on Biocomputing 5. (2000)
341–352

12. McAdams, H., Shapiro, L.: Circuit simulation of genetic networks. Science 269
(1995) 650–6

13. Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling
and querying biomolecular interaction networks. Theoretical Computer Science
325 (2004) 25–44

14. Malone, T., Crowston, K.: The interdisciplinary study of coordination. ACM
Computing Surveys 26 (1994) 87–119

15. Arbab, F.: Reo: A channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14 (2004) 329–366

16. Arbab, F.: Abstract behavior types: A foundation model for components and their
composition. In: [31]. (2003) 33–70

17. Arbab, F., Baier, C., Rutten, J.J.M.M., Sirjani, M.: Modeling component connec-
tors in Reo by constraint automata. In: International Workshop on Foundations
of Coordination Languages and Software Architectures (FOCSLA). ENTCS, Mar-
seille, France, Elsevier Science (2003)

18. Wolkenhauer, O., Ghosh, B., Cho, K.H.: Control & coordination in biochemical
networks (editorial notes). IEEE CSM Special Issue on Systems Biology (2004)

19. Stryer, L.: Biochemistry. Freeman (1988)
20. Department of Energy, U.: http://www.doegenomestolife.org/ (2004)

Modelling Coordination in Biological Systems 25

21. Ideker, T., Galitski, T., Hood, L.: A new approach to decoding life: systems biology.
Annual Review of Genomics and Human Genetics 2 (2001) 343–72

22. Arbab, F., Baier, C., de Boer, F., Rutten, J.: Modeling and temporal logics for
timed component connectors. In: IEEE International Conference on Software En-
gineering and Formal Methods (SEFM ’04), Beijing, China (2004) Submitted.

23. Glass, K., Kauffman, S.A.: The logical analysis of continuous, nonlinear biochem-
ical control networks. J. Theoretical Biology 44 (1974) 103–129

24. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
25. Regev, A., Shapiro, E.: Cells as computation. Nature 419 (2002) 343
26. Cardelli, L.: Brane calculi: Interaction of biological membranes. In: Computational

Methods in Systems Biology (CMSB’04). Number 3082 in LNCS, Paris, France
(2004)

27. Regev, A.: Representation and simulation of molecular pathways in the stochas-
tic pi-calculus. In: 2nd Workshop on Computation of Biochemical Pathways and
Genetic Networks. (2001)

28. Schmulevich, I., Dougherty, E.R., Zhang, W.: From boolean to probabilistic
boolean networks as models of genetic regulatory networs. Proceedings of the
IEEE 90 (2002)

29. Cho, K.H., Wolkenhauer, K.H.J.O.: A hybrid systems framework for cellular
processes (2005) BioSystems.

30. Guillen-Scholten, J.V.: A first translation from Reo to Petri nets and vice-versa
(2004) Talk at ACG meeting, CWI.

31. de Boer, F., Bonsangue, M., Graf, S., de Roever, W.P., eds.: Formal Methods for
Components and Objects. Volume 2852 of LNCS. Springer (2003)

A Rule Markup Language and Its Application to

UML

Joost Jacob�

Centrum voor Wiskunde en Informatica (CWI), Amsterdam, The Netherlands
jacob@cwi.nl

Abstract. In this paper we introduce RML, which stands for Rule
Markup Language and is used for rule–based transformations of XML.
With RML the user can define XML wildcard elements, variables con-
taining parts of the XML such as variables for element names or variables
for lists of elements. Any XML vocabulary can be combined with RML
to define transformations that can be performed by RML tools also dis-
cussed in this paper.

As an application of RML we show how it can be used to specify se-
mantics for statecharts and class–diagrams in UML models. The static
structure is defined in XML and the dynamic behavior of the model is
captured with RML. The RML tools then provide an XML–based exe-
cution platform for UML models. This approach therefore can be used
to simulate and analyze UML models.

Keywords: XML, UML, RML, transformation, rules, simulation.

1 Introduction

The work in this paper was initiated and motivated by work in the IST project
OMEGA (IST-2001-33522, [OME]) sponsored by the European Commission.
The main goal of OMEGA is the correct development of real-time embedded
systems in the Unified Modeling Language [UML]. This goal involves the integra-
tion of formal methods based on model-checking techniques [Cla] and deductive
verification using PVS [PVS].

The eXtensible Markup Language XML (XML [XML]) is used to encode the
static structure of UML models in OMEGA. The XML encoding is generated
by Computer Aided Software Engineering (CASE) tools; it captures classes,
interfaces, associations, state machines, and other software engineering concepts.
The OMEGA tools for model-checking and deductive verification are based on
a particular implementation of the semantics of the UML models in a tool-
specific format ([IF], [Dam], [PVS]). This complicates interoperability of such
tools. In order to ensure that these different implementations are consistent, a
formal semantics of UML models is developed in OMEGA in the mathematical

� Part of this research was funded by the IST project IST-2001-33522, sponsored by
the European Commission.

T. Margaria and B. Steffen (Eds.): ISoLA 2004, LNCS 4313, pp. 26–41, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Rule Markup Language and Its Application to UML 27

formalism of transition systems [PLO]. However, it still requires considerable
effort to ensure that these different implementations are indeed compatible with
the abstract mathematical semantics. Some of the motivation for RML came
in helping with this effort. Since the models produced by the CASE tools are
encoded in XML it was a natural choice to look for an XML transformation
technique instead of encoding a model and semantics in a special-purpose format.
Simulating and analyzing in XML adds the interoperability benefit of XML and
the many available XML tools can be used on the results.

In this paper a general-purpose method for XML transformations is intro-
duced and its application to the specification and execution of UML models.
The underlying idea of this method is to specify XML transformations by means
of rules which are formulated in a problem domain XML vocabulary of choice:
the rules consist of a mix of XML from the problem domain and the Rule Markup
Language (RML, Sect. 3). The input and output of a transformation are pure
problem domain XML; RML is only used to help to define transformation rules.
The RML approach re-uses the problem domain XML as much as possible, with
a “programming by example” technique. With this rule–based approach it be-
comes possible to define transformations that are very hard to do when using
for example XSLT [XSL], the official W3C [W3C] Recommendation for XML
transformations, as discussed in Section 2.1.

The RML tools are available as platform-independent command–line tools so
they can easily be used together with other tools that have XML as input and
output.

RML is not trying to solve harder or bigger transformations than other ap-
proaches. Instead of concentrating on speed or power, RML is designed to be
something that is very usable and interoperable. Experience in several projects
has shown that programmers can learn to use RML in only a few hours with the
tutorial that is available online [RML], and even non-programmers put RML to
good use. With respect to the RML application to UML models, only knowledge
of XML and RML suffices to be able to define and execute their semantics.

As such, RML provides a promising basis for the further development of XML-
based debugging and analysis tools for UML models.

XML itself is not intended for human consumption, but we have developed the
ASCII Markup Language (AML) representation that helps considerably in this
respect. The example model in this paper is presented in AML because AML
is more readable than XML, but otherwise equivalent for this purpose. More
details about AML and an AML to XML translation, and back, are available at
[AML].

Plan of the Paper. The next section starts with describing XML. Section 3
presents RML as a new approach to solve XML transformation problems and
describes how to use RML for defining transformation rules. Section 4 shows
examples of applications of RML, the main example being an application that
results in executable UML models. The conclusion and a discussion of related
work is in Sect. 5.

28 J. Jacob

2 XML and XML Transformations

With XML, data can be annotated and structured hierarchically. There are
several ways to do this and there is no single best way under all circumstances:
designing good XML vocabularies is still an art. For instance, suppose you want
to describe a family in XML: a grandmother named Beth, a father named John,
a mother name Lucy and son named Bill. One way to do this is:

<family>
<grandma name="Beth" />
<father name="John" />
<mother name="Lucy" />
<son name="Bill" />

</family>

The example shows five different XML elements: family, grandma, father,
mother and son. The XML hierarchy is a tree, with nodes called XML elements,
and there has to be one and only one XML element that is the root of the tree, in
the example the family element. An XML element consists of its name, optional
attributes and an ordered list of subelements, where a subelement can also be
a string. Attributes of XML elements are mappings from keys to values, where
the keys are text strings and the values are text strings too.

A string enclosed with angle brackets is called a tag. A minimum tag only
contains the element name, like the <family> in the example. The element name
is not the only thing that can appear between the angle brackets, there can also
be attributes like name="John" in the example. Attributes consist of the attribute
name, an = and the attribute value (a text string) enclosed in double quotes.

An XML element that does not contain other elements, a so called empty
element, has its tag closed by an /, as in <X />, where X is the element name.
An XML element that has children consists of two tags: one for the element
name (and its attributes), and one for closing the element after its children. In
the example the family element is the only element with children. There are
several rules that define if XML is well formed, for instance every opening tag
<X> has to be closed by a closing tag </X>, and these rules can be checked by
tools.

But the XML in the example does not reflect the tree like structure of the
family. Another way is:

<family>
<female>

<name>Beth</name>
<male marriedTo="Lucy">

<name>John</name>
<male>

<name>Bill</name>
</male>

</male>
</female>
<female marriedTo="John">

<name>Lucy</name>
</female>

</family>

A Rule Markup Language and Its Application to UML 29

Here Beth is not the value of an attribute but it is the text content of a name
element. The structure of this example may better indicate that Beth is the
mother of John, but the XML is more verbose than the first example.

An XML vocabulary can be formally defined in a DTD (see the XML Spec-
ification in [XML]) or an XML Schema [XMS], both W3C Recommendations.
There is also an ISO standard for defining vocabularies called RelaxNG [REL].
The definition can express that for instance every female in the example must
have a name child and can have optional female or male childs. With such a de-
finition, called schema, there are XML tools available that can validate if XML
is conforming to a schema. Note that validating is different from checking well-
formedness. It is possible to refer to the definition of the vocabulary used from
inside XML, and there are many more XML concepts that can not be discussed
here due to lack of space, for which I refer to the XML Specification [XML].

A schema only defines syntax, the meaning of the XML constructs defined has
to be defined somewhere else. The W3C is working on standard ways for doing
this (viz. the Semantic Web project) but currently this is usually done in plain
text documents. The family from the example has a tree like structure so in this
respect it is an easy example to describe in XML that also has a tree structure.
But a tree is not the only kind of structure that can be modeled conceptually
with a schema. Other structures can also be modeled in XML because the XML
elements can refer to each other by means of cross-references with identifiers, as
in the second example with the marriedTo attributes.

A lot of XML vocabularies have been designed in recent years, for all kinds
of problem domains. Often these vocabularies are W3C Recommendations, like
RDF, XSLT and MathML [Mat]; another example is XMI [XMI] as developed for
UML [UML] by the Object Management Group [OMG]. The OMEGA project
works with XMI and other XML vocabularies for software.

In general, when having a structure stated in XML data, a dynamics of the
structure can be captured by rules for transforming the XML data. The rules
that define XML transformations can be stated in XML itself too, but the prob-
lem domain XML vocabulary will usually not be rich enough to be able to state
a rule. For this it has to be combined with XML that is suitable for expressing
transformation rules, containing for example constructs to point out what to
replace with what, and where. Section 2.1 shows how an XML vocabulary that
is different from the problem domain vocabulary can be used, which is the cur-
rent way of doing transformations in industry, and Sect. 3 shows the new RML
approach that is based on extension.

2.1 XSLT

Extensible Stylesheet Language Transformations (XSLT, [XSL]) is a W3C rec-
ommendation for XML transformations. It is designed primarily for the kinds
of transformations that have to do with visual presentation of XML data, hence
the style element in the name. A popular use of XSLT is to transform a dull
XHTML page to a colorful and stylized one. Or to generate visualizations from
XML data. However, nowadays XSLT is being used more and more for general

30 J. Jacob

purpose XML transformations, from XML to XML, but also from XML to text.
In the OMEGA project we have used XSLT to do transformations of software
models (UML models stated in XMI [XMI]) resulting in models encoded in other
XML vocabularies and also resulting in textual syntax like PVS [PVS]. The sta-
tic structure of the models was transformed. But when we wanted to capture
the semantics of execution of these software models we found that XSLT is not
very usable for the particular kind of transformations that describe dynamics.
These transformations use a match pattern that is distributed over several parts
of an XML tree, whereas the matching technique used in XSLT is designed to
match in a linear way, from root to target node in a tree. This linear matching
is not suitable for matching of a pattern with several branches.

For instance, matching duplicate children of an element is very hard with
XSLT. The MathML expression

<math>
<apply>

<and />
<ci>p</ci>
<ci>p</ci>
<ci>q</ci>

</apply>
</math>

meaning p ∧ p ∧ q in propositional logic, is logically equivalent to

<math>
<apply>

<and />
<ci>p</ci>
<ci>q</ci>

</apply>
</math>

meaning p∧q. In the MathML the <ci> element is used for pointing out constant
identifiers and the apply element is used for building up mathematical expres-
sions. Suppose we would like to transform all p ∧ p ∧ q into p ∧ q, where p and
q can be anything but two p’s in an expression are equal. To perform such a
transformation a tool has to look for a pattern with two identical children and
then remove one of the children. Since XSLT is a Turing–complete functional
programming language, it is possible to do this transformation, but XSLT tem-
plates for these kinds of transformations are extremely long and complex. XSLT
simply was not designed for these kinds of transformations; the designers did
not feel much need for them in the webwide world of HTML and webpublishing.
The MathML+RML rule for removing duplicate children is simple, it is one of
the examples in the RML tutorial [RML].

3 RML

This section first introduces the idea of XML wildcard elements. After that the
RML syntax is introduced in Sect. 3.2, before Section 3.3 describes the RML
tools.

A Rule Markup Language and Its Application to UML 31

3.1 XML Wildcard Elements

The transformation problem as shown in Sect. 2.1 reminds one of the use of
wildcards for solving similar problems in text string matching. The idea of using
an XML version of wildcards is a core idea of our method and of this paper. The
idea is to define XML notation for an XML version of constructs like the * and
? and + and others in text–based wildcards as in Perl regular expressions, and
then using these constructs for matching and variable binding. These constructs
are called XML wildcard elements. They consist of complete XML elements and
attributes as can be formally defined with a schema, but they also consist of
extensions for denoting wildcard variables inside a problem domain XML. These
variables are just like the variables as they are used in the various languages
available for text–based wildcard matching, for instance Perl regular expressions.
The variables have a name, and they are given a value when a match succeeds.
This value can then be used in the output of a transformation rule.

3.2 The RML Syntax

RML rules are stated in XML. The basis of a rule is that in the antecedent of
the rule the input is matched, and then whatever matched is replaced by the
consequent of the rule.

RML was designed to be mixed with any problem domain XML, to be able
to define transformations while re-using the problem domain XML as much as
possible. RML is a mixture of XML elements, conventions for XML-attribute
names, and conventions for attribute values, to mix in with XML from the prob-
lem domain vocabulary at hand. RML introduces some new XML elements and
uses an element from XHTML. From XHTML only the div element is used and
it is used to distinguish a rule, the antecedent of a rule, and the consequence of
a rule by means of the class attribute of the div tag. We use the div tag from
XHTML for reasons that have to do with a presentation in browsers.

The Table in Fig. 1 lists all the current RML constructs with a short expla-
nation of their usage in the last column. These have been found to be sufficient
for all transformations encountered so far in practice in the projects where RML
is being used. An X in the XML tags can be replaced by a string of choice. The
position that is sometimes mentioned in the explanations is the position in the
sequential list that results from a root-left-right tree traversal of the XML tree
for the rule. It corresponds with how people in the western world reading an
XML document encounter elements: top-down and left to right. A position in
the rule tree corresponds with zero or more positions in the input tree, just like
the * in the wildcard expression a*b corresponds with c on input acb and with
cd on input acdb and with nothing on input ab. With the constructs in the
Table in Fig. 1 the user can define variables for element names, attribute names,
attribute values, whole elements (with their children) and lists of elements. An
XML+RML version of the a*b wildcard pattern is

<a /> <rml-list name="Star" />

32 J. Jacob

Elements that designate rules

div class="rule"
div class="antecedent" context="yes"
div class="consequence"

element attribute A C meaning

Elements that match elements or lists of elements

rml-tree name="X" * Bind 1 element at this position to RML variable X.
rml-text name="X" * Bind XML text-content to variable X.
rml-list name="X" * Bind a sequence of elements to X.
rml-use name="X" * Output the contents of the RML variable X at this

position.

Matching element names or attribute values

rml-X ... * Bind element name to RML variable X.
rml-X ... * Use variable X as element name.
... ...="rml-X" * Bind attribute value to X.
... ...="rml-X" * Use X as attribute value.
... rml-others="X" * Bind all attributes that are not already bound to X.
... rml-others="X" * Use X to output attributes.
... rml-type="or" * If this element does not match, try the next element

in the antecedent if that also has rml-type=”or”.

Elements that add constraints

rml-if child="X" * Match if X is already bound to 1 element, and occurs
somewhere in the current sequence of elements.

rml-if nochild="X" * Match if X does not occur in the current sequence.
rml-if last="true" * Match if the preceding sibling of this element is the

last in the current sequence.

A * in the A column means the construct can appear in a rule antecedent. A * in the
C column is for the consequence.

Fig. 1. All the RML constructs

and this can be used as part of the antecedent of an RML rule that uses the con-
tents of the Star variable in the consequent of the rule. The a and b elements
are from some XML vocabulary, the rml-list element is from RML and de-
scribed in the Table in Fig. 1. Section 4.1 shows a small but complete RML rule.
Examples of input and rules take up much space and although we would have
preferred to present more rule examples here now, there is simply not enough
space to do that and we strongly invite the reader to look at the examples in
the RML tutorial at [RML] where there are examples for element name renam-
ing, element replacing, removing duplicates, copying, attribute copying, adding
hierarchy and many more.

It is easy to think of more useful elements for RML than in the Table, but not
everything imaginable is implemented because a design goal of RML is to keep it

A Rule Markup Language and Its Application to UML 33

as simple and elegant as possible. Only constructs that have proven themselves
useful in practice are added in the current version.

The execution of a rule consists of binding variables in the matching process,
and then using these variables to produce the output. Variable binding in RML
happens in the order of a root-left-right traversal of the input XML tree. If an
input XML tree contains more than one match for a variable then only the first
match is used for a transformation. The part of the input that matches the rule
antecedent is replaced by the consequent of the rule. If a rule does not match then
the unchanged input is returned as output. If a rule matches input in more than
one place and you want to transform all matches then you will have to repeat
applying the rule on the input until the output is stable. There is a special RML
tool called dorules for this purpose.

3.3 The RML Tools and Libraries

Open-source tools and libraries can be downloaded from the RML website [RML]
where also an RML tutorial can be found. The tutorial contains information
about installing and running the tool, and there is also more technical infor-
mation on the website, for instance about a matching algorithm. The tools and
libraries have been successfully used under Windows, Linux, Solaris, and Apple.

A typical usage pattern of the applyrule command–line tool is

$ python applyrule.py --rule myrule.xml --input myinput.xml

that will print the result to console, or it can be redirected to a file.
The rule and the input are parameterized, not only as command–line para-

meters but also in the internal applyrule function; this makes the tool program
also usable as a library and thus suitable for example for programming a simu-
lation engine. There is an interface to additional hook functions so tools can be
extended, for instance for programming new kinds of constraints on the match-
ing. However, the set of RML constructs in the current version has proven to
be sufficient for various XML transformation work, so adding functions via the
hooks will normally not be necessary. An example of when it is desirable to
add functions is when a tool designer for example wants to add functionality
that does calculations on floating point values in the XML. The RML tools are
written in Python [Pyt] and the Python runtime can use the fast rxp parser
written in, and compiled from, C, so the XML parsing, often the performance
bottleneck in such tools, is as fast and efficient as anything in the industry. If the
rxp module is not installed with your Python version then RML automatically
uses another XML parser on your system.

The RML tutorial at [RML] also describes a very simple XML vocabulary for
defining RML recipes, called Recipe RML (RRML), and a tool called dorecipe
for executing recipe–based transformations. RRML is used to define sequences
of transformations and has proven itself useful in alleviating the need for writing
shell scripts, also called batch files, containing sequences of calls to the RML
tools.

34 J. Jacob

4 RML Examples

The main example presented in this paper is the executable specification of the
semantics of UML models in XML and this is the topic of Section 4.1. Section
4.2 briefly mentions other projects wherein RML is applied.

4.1 Executable UML Models

The application of RML to the semantics of UML models and its resulting
execution platform is based on the separation of concerns betweeen coordina-
tion/communication and computation. This exploits the distinction in UML be-
tween so-called triggered and primitive operations. The behavior of classes is
specified in UML statemachines with states and transitions, and every transi-
tion can have a trigger, guard, and action. A transition does not need to have
all three, it may for example have only an action or no trigger or no guard. Trig-
gered operations are associated with events: if an object receives an event that
is a trigger for a transition, and the object is in the right location for the transi-
tion, and the guard for that transition evaluates to True, then the action that is
specified in the transition is executed. The triggered operations can be synchro-
nous (the caller blocks until an answer is returned) or asynchronous. Events can
be stored in event queues, and the queues can be implemented in several ways
(FIFO, LIFO, random choice, . . .). There are also primitive operations: they
correspond to statements in a programming language, without event association
or interaction with an event mechanism. The primitive operations are concerned
with computations, i.e. data-transformations, the triggered operations instead
are primarily used for coordination and communication. More details can be
found in [Dam].

This distinction between triggered and primitive operations and the corre-
sponding separation of concerns between coordination/communicaion and com-
putation is reflected in the RML specification and execution of UML models
which delegates (or defers) the specification of the semantics and the execution
of primitive operations to the underlying programming language of choice. This
delegation is not trivial, because the result of primitive operations has to be
reflected in the values of the object attributes in the XML, but the details of the
delegation mechanism can not be given here due to a lack of space.

In our example the problem domain is UML and we will use a new XML
vocabulary that is designed for readability and elegance. This language is called
km, for kernel model; a RelaxNG [REL] schema is at http://homepages.cwi.nl/
˜jacob/km/km.rnc.

The online example is a prime sieve, it was chosen because it shows all the
different kinds of transitions and it has dynamic object creation. It generates
objects of class Sieve with an attribute p that will contain a prime number. But
the user can edit the example online or replace it with his or her own example, if
the implementation language for actions and guards is the Python programming
language. A similar application can be written for the Java language, and UML
models from CASE tools can be translated automatically to the km language.

A Rule Markup Language and Its Application to UML 35

The example can be executed online in an interactive webapplication on the
internet at [KM]. In the km application the user fills in a form with an object
identity and a transition identity, and pressing a button sends the form to the
webapplication that performs the corresponding transition. Instead of a user
filling in a form, a program can be written that calls the website and fills in
the form, thus automating the tool. We did so, but for this paper we consider a
discussion of the automated version out of scope.

The km language defines XML for class diagrams and object diagrams. The
classes consist of attribute names and a statemachine definition. The statema-
chines have states and transitions, where the transitions have a guard, trigger
and action like usual in UML. The objects in the object diagram have attributes
with values and an event queue that will store events sent to the object. An
example of an object is

objectdiagram
obj class=Sieve id=2 location=start target=None

attr name=p value=None
attr name=z value=None
attr name=itsSieve value=None
queue

op name=e
param value=2

where the object is of type Sieve, finds itself in the start state of the statema-
chine of the Sieve class, and has an eventqueue with one event in it with name
e and event parameter 2.

A detailed description of the km language and its design would take too much
space here, but the interested reader who knows UML will have no trouble recog-
nizing the UML constructs in the models since the km language was designed
for readability.

In the km language the event semantics is modelled, but the so-called primitive
operations that change attribute values are deferred to a programming language.
So the models will have event queues associated with objects and executing a
model will for example show events being added to queues, but operations that
are not involved with events but only perform calculations are stored in the
model as strings from the programming language of choice. Such an operation
can be seen in the example as

transition id=t3
source state=state_3
target state=state_1
action

implementation
"""x = x + 1"""

where we see a transition in the statemachine with an action, the statement
executed by the programming language (Python in this case) is x = x + 1.
Transitions can also have a guard with an expression in a programming language,
also encoded as text content of an implementation element.

36 J. Jacob

We can now show a simple example RML rule.

<div class="rule" name="set location">
<div class="antecedent">

<obj id="rml-IDOBJ" location="rml-L" target="rml-T" rml-others="rml-O" >
<rml-list name="ObjChildren"/>

</obj>
</div>
<div class="consequence">

<obj id="rml-IDOBJ" location="rml-T" target="None" rml-others="rml-O">
<rml-use name="ObjChildren"/>

</obj>
</div>

</div>

This is a rule that is used after a transition has been taken successfully by
an object modeled with km. With this rule the location attribute of the object
is assigned the value of the target attribute and the target attribute is set to
None. An example of the effect of the rule would be that

<obj id="id538" location="state_3" target="state_5" ... >
<queue>

...
</queue>

</obj>

is changed into

<obj id="id538" location="state_5" target="None" ... >
<queue>

...
</queue>

</obj>

for an object with identifier id538.
When applying this rule, the RML transformation tool first searches for an

obj element in the input, corresponding with the obj element in the antecedent
of the rule. These obj elements match if the obj in the input has an id attribute
with the value bound to the RML IDOBJ variable mentioned in the antecedent, in
the example this value is id538 and it is bound to the RML variable IDOBJ before
the rule is applied. This pre-binding of some of the variables is how the tool can
manage and schedule the execution of the RML transformation rules. The IDOBJ
is a value the user of the online webapplication supplies in the form there. If the
obj elements match, then the other RML variables (L, T, O and ObjChildren)
are filled with variables from the input obj. The L, T and O variables are bound
to strings, the ObjChildren variable is bound to the children of the obj element:
a list of elements and all their children. The consequence of the rule creates a
new obj element, using the values bound to the RML variables, and replaces the
obj element in the input with this new obj element.

Due to lack of space we restrict the description of the formalization in RML
to the rule for the removal of an event from the event-queue, the antecedent is
shown in AML notation:

A Rule Markup Language and Its Application to UML 37

km
classdiagram

...
class name=rml-ClassName

statemachine
transition id=rml-IDTRANS

trigger
op name=rml-TriggerName

rml-list name=Params
...

objectdiagram
...
obj class=rml-ClassName id=rml-IDOBJ

rml-others=rml-OtherObjAttrs
queue

rml-list name=PreEvents
op name=rml-TriggerName
rml-list name=PostEvents

and this contains some lines with ... in places where rml-list and rml-use
constructs are used to preserve input context in the output. Here we see that
in RML a pattern can be matched that is distributed over remote parts in the
XML, the remoteness of the parts is why the rule has so many lines. In short,
this rule looks for the name of the trigger that indicates the event that has to be
removed from the event-queue, and then simply copies the event-queue without
that event. But to find that name of the trigger, a search through the whole km
XML model has to take place, involving the following steps.

During application of this rule, the matching algorithm first tries to match
the input with the antecedent of the rule, where IDOBJ and IDTRANS are
pre-bound RML variables, input to the tool. With these pre-bound variables
it can find the correct obj, then it finds the ClassName for that object. With
the ClassName the class of the object can be found in the classdiagram in
km XML. When the class of the object is found, the transition in that class
with id TRANSID can be found and in that transition element in the input
we can finally find the desired TriggerName. The algorithm then looks for an
op (operation) event with name TriggerName in the event-queue of the obj,
and binds all other events in the event-queue to RML variables PreEvents and
PostEvents. In the consequence of the rule then, all these bound RML variables
are available to produce a copy of the input, with the exception that the correct
event is removed. As given, the rule removes the first event that matches. It is
trivial to change the rule to one that removes only the first event in a queue
(by removing the PreEvents), or only the last. This is an example that shows
that the semantics defined in the RML rules can be easily adapted, even during
a simulation, and this makes such rules particulary suitable for experimental
analysis.

The km application gives comments, for example about the result of the eval-
uation of a guard of a transition. If the user for instance selects a transition
identity that does not correspond with the current state of the object, in the
online example if you select (ObjID,TransitionID)=(1,t1) twice, a message is
displayed on top of the model
Exiting: Wrong location (object:state_1 transition:start) meaning that transition t1
can not be taken because the object is in state state_1 and the transition is

38 J. Jacob

defined for a source state with name start. Such messages do not interfere with
the model itself, they are encoded as comments, and the model is unchanged after
this message.

The only software a user needs to use the interactive application is a standards
compliant browser like Mozilla or Internet Explorer. A user can not only go
forward executing a model, but also go backward with browser’s Back button.
This is an example of the benefit of interoperability that XML offers, together
with a software architecture and design that is platform independent.

4.2 Other Examples

If a formalism is expressed in mathematics, then MathML is a generally usable
way to express structure, and RML rules extending MathML can capture the
dynamics. As an example of this, RML is used for an online interactive theorem
prover that can be used to derive proofs for tautologies in propositional logic, at
http://homepages.cwi.nl/˜jacob/MathMLcalc/MathMLcalc.html.

Although defining models and semantics in MathML will appeal to the math-
ematically educated, sometimes it is better to define a new special-purpose XML
vocabulary; to make it more concise, better readable, more efficient, and for sev-
eral other reasons. This was the case in the Archimate [Arch] project where RML
has been applied successfully to Enterprise Architecture and Business Models.
Rule–based transformations are being used for analysis of models and for vi-
sualizations. The RML tutorial and the downloadable RML package at [RML]
contain examples in the Archimate language.

5 Related Work and Conclusion

Standards related to RML are XML [XML], MathML [Mat] and XSLT [XSL].
MathML is a W3C specification for describing mathematics in XML, and it is the
problem domain language for the proof example in this paper. XSLT is a W3C
language for transforming XML documents into other XML documents, and is
discussed in Section 2.1. There are also standards that are indirectly connected
with XML transformations, like XQuery that can treat XML as a database that
can be queried, but a discussion of the many XML standards here is out of scope.

The RuleML [RUL] community is working on a standard for rule-based XML
transformations. Their approach differs from the RML approach: RML re-uses
the problem domain XML, extended with only a few constructs (in the table in
Fig. 1) to define rules; whereas RuleML superimposes a special XML vocabulary
for rules. This makes the RuleML approach complex and thus difficult to use
in certain cases. The idea of using wildcard elements for XML has not been
incorporated as such in the RuleML approach, but perhaps it can be added to
RuleML and working together with the RuleML community in the future can
be interesting.

There are a number of tools, many of them commercial, that can parse XML
and store data in tables like those in a relational database. The user has to define

A Rule Markup Language and Its Application to UML 39

rules for extracting the data, to define what is in the columns and the rows of the
tables, to define an entity-relationship model, and other things. Once the data
the user is interested in is in the database, a standard query language like SQL
can be used to extract data. And then that data can be used to construct new
XML. The XML application called XQuery can be used in a similar way, and it is
the approach taken by ATL [Bez]. It would be possible to do any transformation
with these techniques, but it would be very complex.

The Relational Meta-Language [RelML] is a language that is also called RML,
but intended for compiler generation, which is much more roundabout and cer-
tainly not usable for rapid application development like with RML in this paper.

An example of another recent approach is fxt [Ber], which, like RML, defines
an XML syntax for transformation rules. Important drawbacks of fxt are that
it is rather limited in its default possibilities and relies on hooks to the SML
programming language for more elaborate transformations. For using SML a user
has to be proficient in using a functional programming language. An important
disadvantage of a language like SML is that it is not a mainstream programming
language like Python with hundreds of thousands or users worldwide, which
makes it unattractive to invest in tools based on SML. The fxt tools are available
online but installing them turned out to be problematic.

The experience with several tools as mentioned above leads to the concept of
usability of a tool in general. Here, a tool is not considered usable enough if it
is too difficult to install and configure it and get it to run, or if the most widely
used operating system Windows is not supported, or if working with the tool
requires a too steep or too high learning curve, for example because the user
has to learn a whole new programming language that is not a mainstream pro-
gramming language. Although the fxt article [Ber] interestingly mentions ”XML
transformation . . . for non-programmers”, fxt is unfortunately an example of an
approach that is not usable enough according to this usability definition.

XML is still gaining momentum and becoming more important and as a result
there are many more tools from academic research available, rather too much to
mention here as an internet search for “XML tool” reveals hundreds of search
results. Unfortunately none of them turned out to be useful in practice for our
work according to the above definition of usability, after spending considerable
time trying them out.

Other popular academic research topics that could potentially be useful for
rule–based XML transformations are term–rewriting systems and systems based
on graph grammars for graph reduction. However, the tested available tools for
these systems suffer from the same kind of problems as mentioned above: the
tools are generally not portable and most will never be portable for technical
reasons, and using these tools for XML transformations is an overly complex way
of doing things. To use these kind of systems, there has to be first a translation
from the problem XML to the special-purpose data structure of the system.
And only then, in the tool–specific format, the semantics is defined. But the
techniques used in these systems are interesting, especially for very complex or

40 J. Jacob

hard transformations, and it looks worthwhile to see how essential concepts of
these techniques can be incorporated in RML in the future.

Compared with the related work mentioned above, a distinguishing feature of
the RML approach is that RML re-uses the language of the problem itself for
matching patterns and generating output. This leads in a natural way to a much
more usable and clearly defined set of rule–based transformation definitions, and
an accompanying set of tools that is being used successfully in practice.

References

[AML] AML website. url: http://homepages.cwi.nl/˜jacob/aml
[Arch] The Archimate project. url: http://www.telin.nl/NetworkedBusiness/

Archimate/ENindex.htm
[Ber] A. Berlea and H. Seidl. fxt A transformation language for XML documents.

Journal of Computing and Information Technology, 10(1):19–35, 2002.
[Bez] J. Bzivin, G. Dup, F. Jouault, G. Pitette, and J. Rougui. First experi-

ments with the ATL model transformation language: Transforming XSLT
into XQuery. OOPSLA 2003 Workshop, Anaheim, California, October 27,
2003. url: http://modelware.inria.fr/rubrique12.html

[Cla] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. In ACM
Transactions on Programming Languages and Systems, 8(2):244–263, 1986.

[Dam] W. Damm, B. Josko, A. Pnueli, and A. Votintseva. Understanding UML:
a formal semantics of concurrency and communication in real-time UML.
In Proceedings of Formal Methods for Components and Objects (FMCO),
LNCS 2852, 2002.

[IF] M. Bozga, S. Graf, and L. Mounier. Automated validation of distributed soft-
ware using the IF environment. In S. D. Stoller and W. Visser, editors, Work-
shop on Software Model-Checking, associated with CAV’01 (Paris, France)
July 2001 Volume 55 of Electronic Notes in Theoretical Computer Science.
Elsevier Science Publishers.

[KM] UML Kernel model semantics demonstration. url: http://homepages.cwi.nl/
˜jacob/km/cgikm.html

[Mat] Mathematical markup language (MathML) Version 2.0 (2nd Edition), W3C
recommendation, August 2003. url: http://www.w3.org/Math/

[OME] OMEGA project: correct development of real-time embedded systems. url:
http://www-omega.imag.fr

[OMG] The object management group (OMG). url: http://www.omg.org/
[PLO] G.D. Plotkin. A structural approach to operational semantics. Technical Re-

port DAIMI FN 19, Department of Computer Science, University of Aarhus,
Denmark, 1981.

[PVS] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS
system guide version 2.4, December 2001. url: http://pvs.csl.sri.com/

[Pyt] G. van Rossum. Python reference manual. Centrum voor Wiskunde
en Informatica (CWI), report ISSN 0169-118X, April, 1995. url:
http://www.python.org/

[REL] J. Clark. The design of RELAX NG. December 6, 2001. url: http://
www.thaiopensource.com/relaxng/design.html

A Rule Markup Language and Its Application to UML 41

[RelML] M. Pettersson. RML - A new language and implementation for natural se-
mantics. In M. Hermenegildo and J. Penjam, editors, Proceedings of the 6th
International Symposium on Programming Language Implementation and
Logic Programming, PLILP, volume 884 of LNCS, pages 117-131. Springer-
Verlag, 1994.

[RML] RML website. url: http://homepages.cwi.nl/˜jacob/rml
[RUL] The rule markup initiative community. url: http://www.dfki.uni-kl.de/

ruleml/
[UML] G. Booch, I. Jacobson, and J. Rumbaugh. The unified modeling language

reference manual. Addison Wesley, 1999.
[W3C] World wide web consortium (W3C). url: http://www.w3c.org
[XMI] XML metadata interchange (XMI) v2.0, OMG, May 2003. url: http://

www.omg.org/technology/documents/formal/xmi.htm
[XML] Extensible markup language (XML) 1.0 (Second Edition), W3C recommen-

dation, October 2000. url: http://www.w3c.org/XML/
[XMS] R. L. Costello. XML schema tutorial, W3C, September 2001. url: http://

www.w3.org/XML/Schema
[XSL] XSL transformations (XSLT) version 1.0, W3C recommendation, November

1999. url: http://www.w3c.org/TR/xslt

Using XML Transformations

for Enterprise Architectures

A. Stam1,�, J. Jacob2, F.S. de Boer1,2,
M.M. Bonsangue1,��, and L. van der Torre3

1 LIACS, Leiden University, The Netherlands
astam@liacs.nl

2 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
3 University of Luxembourg, Luxembourg

Abstract. In this paper we report on the use of XML transformations
in the context of Enterprise Architectures. We show that XML trans-
formation techniques can be applied to visualize and analyze enterprise
architectures in a formal way. We propose transformational techniques
to extract views from an XML document containing architectural infor-
mation and indicate how to perform a specific form of impact analysis
on this information. The transformations are formally expressed with the
language RML, a compact yet powerful transformation language devel-
oped at CWI, which obtains its power from regular expressions defined
on XML documents. We discuss a tool that has been built on top of
it to visualize the results of the transformations and illustrate the ad-
vantages of our approach: the genericity of XML, the application of a
single technique (namely XML transformations) for various tasks, and
the benefits of having a model viewer which is in complete ignorance of
the architectural language used.

1 Introduction

In this paper, we investigate the use of XML transformation techniques in the
context of enterprise architectures, a field in which much work is currently of-
ten done by hand, like analysis and the time-consuming creation of views for
different stakeholders. The absence of formal methods and techniques hinders
the quality of analyses, the consistency between different views and the agility
with respect to changes in the architecture. Moreover, architects often want to
have their own style of visualization (for cultural and communication reasons
within organizations), without having to conform to a certain standard. Many
architectural tools depend on a specific architectural language and often only
support one visualization style or visual language for it.

In order to overcome these problems, we propose a way of working that in-
troduces flexibility in the architectural language and visualizations used, while
� Corresponding author.

�� The research of Dr. Bonsangue has been made possible by a fellowship of the Royal
Netherlands Academy of Arts and Sciences.

T. Margaria and B. Steffen (Eds.): ISoLA 2004, LNCS 4313, pp. 42–56, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Using XML Transformations for Enterprise Architectures 43

adding formality to both the actual creation of views and the analysis of ar-
chitectures. Our approach is to specify architectural information as XML docu-
ments and use XML transformation techniques for creating views and perform-
ing analyses on an architecture. Moreover, we propose to use a visualization tool
which is independent of a specific architectural or visual language.

In particular, within this paper, we focus on three subquestions:

– Given a set of architectural information described in a single XML document.
How can we use XML transformations to select a subset of this information
for a specific architectural view?

– How can we transform an XML document containing architectural informa-
tion into another XML document containing visual information in terms of
boxes, lines, etc.? How can we build a model viewer which interprets this
visual information without having to know anything about the architectural
language used?

– How can we use XML transformations to perform analyses on an archi-
tectural description? We have chosen to focus at a specific form of impact
analysis: given an entity within the architectural description which is con-
sidered to be modified or changed, which other entities in the description
are possibly influenced by this change?

We have carried out the following activities: First, we developed a running ex-
ample for verification of our ideas and techniques. Then, we developed an XML
document containing the architectural information of the running example. We
used the ArchiMate language and its corresponding XML Schema, containing
the concepts from the ArchiMate metamodel. After this, we developed an XML
Schema for visualization information and built a model viewer, which is entirely
ignorant of the ArchiMate language, and only interprets visualization informa-
tion and shows this information on the screen. We only used XML transforma-
tion techniques for the actual visualization. Then, we selected an easy-to-use
transformation tool, namely the Rule Markup Language (RML), and built the
transformation rules for selection, visualization and impact analysis.

The layout of this document is as follows: In Section 2, we introduce the
reader to enterprise architecture and ArchiMate. In Section 3, XML and the Rule
Markup Language (RML) are explained. In Section 4 we introduce the running
example: ArchiSurance, a small insurance company which has the intention to
phase out one of its core applications. In Section 5 we show transformation
rules for the creation (selection and visualization) of architectural views, while
in Section 6 we illustrate transformation techniques for analysis by means of
performing a small impact analysis. In Section 7 we conclude.

2 Enterprise Architecture

A definition of architecture quoted many times is the following IEEE definition:
“the fundamental organization of a system embodied in its components, their
relationships to each other and to the environment and the principles guiding its

44 A. Stam et al.

design and evolution” [11]. Therefore, we can define enterprise architecture [8]
as the fundamental organization of an enterprise embodied in its components,
their relationships to each other and to the environment and the principles guid-
ing its design and evolution. It covers principles, methods and models for the
design and implementation of business processes, information systems, technical
infrastructure and organizational structure.

Architectural information is usually presented via (architectural) views. With
these views and the information they contain, stakeholders within an organi-
zation are able to gain insight into the working of the organization, the im-
pact of certain changes to it, and ways to improve its functioning. Usually, we
can distinguish between architectural information in relation to the as-is situa-
tion of an organization and information in relation to its intended to-be situa-
tion. According to IEEE, views conform to viewpoints that address concerns of
stakeholders.

2.1 ArchiMate

Within the ArchiMate project [10], a language for enterprise architecture has
been developed [7]. This language can be used to model all architectural aspects
of an organization. A metamodel containing the concepts in the ArchiMate lan-
guage is given in Figure 1.

Process

Simple
service

Composite
service

Function

Composite
behaviour

Action

Collaboration/
Connector

Information

Trans -
action

2..*

Composite
actor/

component

Simple
actor/

Component
Data

collection
Data
item

Structure
aspect

Behaviour
aspect

manipulates

perf orms

Document

Information
aspect

Medium Message

contributes to

Actor/
Component

offers

uses

carries

fulfils

Data
object

Role/
Interface

Behaviour
element

Service

exchanges

affects

results in

accessible

via

Event

Inter -
action

Fig. 1. The ArchiMate metamodel

Using XML Transformations for Enterprise Architectures 45

As can be seen, the language contains concepts for several aspects of an organi-
zation. The individual concepts can be specialized for multiple domains, like the
business domain, application domain or technical domain. Thus, a Service can
be a business service, an application service or a technical service, for example.

3 XML and the Rule Markup Language

In this section we introduce XML and present the Rule Markup Language
(RML), which is the XML transformation language we have used for creating
views and performing analyses of enterprise architectures.

3.1 XML

The eXtensible Markup Language (XML) [4] is a universal format for documents
containing structured information so that they can be used over the Internet for
web site content and several kinds of web services. It allows developers to easily
describe and deliver rich, structured data from any application in a standard,
consistent way.

Today, XML can be considered as the lingua franca in computer industry,
increasing interoperability and extensibility of several applications. Terseness
and human-understandability of XML documents is of minimal importance, since
XML documents are mostly created by applications for importing or exporting
data.

3.2 The Rule Markup Language

In our study, we have used the Rule Markup Language (RML) for the specifi-
cation of XML transformations. From a technical point of view, other transfor-
mation tools like the popular XSLT, RuleML or QVT could have been used as
well for the applications described in this paper. However, RML was originally
designed to make the definition of executable XML transformations possible
for various stakeholders other than programmers, including architects. Thus, in-
stead of creating views and performing analyses by hand, architects can formally
specify transformations of the contents of their own XML documents and ap-
ply these transformations in order to select, visualize and analyze architectural
information.

The Rule Markup Language (RML) [6] consists of a set of XML constructs
which can be added to an existing XML vocabulary in order to define RML
rules for that XML vocabulary. Specific RML tools can execute these rules,
to transform the input XML according to the rule definition. The set of RML
constructs is shown in Table 2 with a short explanation of each construct.

Each RML rule consists of an antecedent and a consequence. The antecedent
defines a pattern and variables in the pattern. Without the RML constructs
for variables, this pattern would consist only of elements from the chosen XML
vocabulary. The pattern in the antecedent is matched against the input XML.

46 A. Stam et al.

Elements that designate rules

div class="rule"
div class="antecedent" context="yes"
div class="consequence"

element attribute A C meaning

Elements that match elements or lists of elements

rml-tree name="X" * Bind 1 element (and children) at this position to RML
variable X.

rml-list name="X" * Bind a sequence of elements (and their children) to X.
rml-use name="X" * Output the contents of RML variable X at this posi-

tion.

Matching element names or attribute values

rml-X ... * Bind element name to RML variable X.
rml-X ... * Use variable X as element name.
... ...="rml-X" * Bind attribute value to X.
... ...="rml-X" * Use X as attribute value.
... rml-others="X" * Bind all attributes that are not already bound to X.
... rml-others="X" * Use X to output attributes.
... rml-type="or" * If this element does not match, try the next one with

rml-type=”or”.

Elements that add constraints

rml-if child="X" * Match if X is already bound to 1 element, and occurs
somewhere in the current sequence of elements.

rml-if nochild="X" * Match if X does not occur in the current sequence.
rml-if last="true" * Match if the younger sibling of this element is the last

in the current sequence.

A * in the A column means the construct can appear in a rule antecedent. A * in the
C column is for the consequence.

Fig. 2. An overview of the RML constructs

RML constructs can contain variables, which are specified in a familiar way, by
using wild-card patterns like * and + and ?. The RML variables also have a name
that is used to remember the matching input. Things that can be stored in RML
variables are element names, element attributes, whole elements (including the
children), and lists of elements.

If the matching of the pattern in the antecedent succeeds, the variables are
bound to parts of the input XML and they can be used in the consequence of
an RML rule to produce output XML. When a rule is applied to the input, one
of the RML tools will by default replace the part of the input that matched
the antecedent, by the output defined in the consequence of the rule; the input
surrounding the matched part remains unchanged.

RML does not define, need, or use another language, it only adds a few con-
structs to the XML vocabulary used, like the wild-card pattern matching.

Using XML Transformations for Enterprise Architectures 47

3.3 Comparison with Other Techniques

XSLT[5] is a W3C language for transforming XML documents into other XML
documents.

The RuleML [3] community is working on a standard for rule-based XML
transformations. Their approach differs from the RML approach: RuleML su-
perimposes a special XML vocabulary for rules, which makes it less suitable to
use in combination with another XML vocabulary.

The Relational Meta-Language [9] is a language that is also called RML, but
intended for compiler generation, which is definitely not suited for rapid appli-
cation development like with RML in this paper.

Another recent approach is fxt [1], which, like RML, defines an XML syntax
for transformation rules. Important drawbacks of fxt are that it is rather limited
in its default possibilities and relies on hooks to the SML programming language
for more elaborate transformations.

Other popular academic research topics that could potentially be useful for
rule based XML transformations are term rewriting systems and systems based
on graph grammars for graph reduction. However, using these tools for XML
transformations is a contrived and arbitrary way of doing things. To exploit
these kind of systems successfully in a context where a specific XML vocabulary
is already in use, there has to be first a translation from this specific XML to the
special-purpose data structure of the system. And only then, in the tool–specific
format, the semantics is defined. But the techniques used in these systems are
interesting, especially for very complex transformations.

Compared with the related work mentioned above, a distinguishing feature of
the RML approach is that RML re-uses the language of the problem itself for
matching patterns and generating output. This leads in a natural way to a much
more usable and clearly defined set of rule based transformation definitions, and
an accompanying set of tools that is being used successfully in practice.

4 Running Example

Throughout this paper, we use a running example to illustrate our ideas. Though
our example is small compared to a real-life enterprise architecture, its sole
purpose in this paper is to illustrate the use of XML transformation tech-
niques, for which it contains sufficient complexity. Analyzing the performance
of RML when applied to larger architectural models is a topic for future
research.

A small company, named ArchiSurance, sells insurance products to customers.
Figure 3 contains a Business View of the company. Two roles are involved,
namely the insurance company and the customer, which work together in two
collaborations, namely negotiation, which is the set of activities performed in
order to come to an appropriate insurance for a customer by discussion and
consultation, and contracting, i.e., the set of activities performed in order to
register a new customer and let it sign a contract for an insurance policy.

48 A. Stam et al.

Customer
Insurance
Company

Negotiation Contracting

Fig. 3. A Business View of ArchiSurance

Request for
insurance

Formalize
request

Create contractInvestigate
Register

policy
Sign contract

Check
contract

Customer
Insurance
Company

Negotiation Contracting

Fig. 4. A Process View of ArchiSurance

PrintWise ArchiSure InterMed

Print contracts View requests Edit policies Edit requests

Fig. 5. An Application View of ArchiSurance

Within Figure 4, the business process for selling an insurance product to a
customer is shown in a Process View, together with the roles and collaborations
that are involved in executing the individual steps within the process.

Figure 5, an Application View, shows the software products (components)
that are used within the ArchiSurance company and the services they offer.
ArchiSure is a custom-made software application for the administration of insur-
ance products, customers and premium collecting. PrintWise is a out-of-the-box
tool for official document layout and printing. InterMed is an old application,
originally meant for intermediaries to have the possibility to enter formal re-
quests for insurance products for their customers. The application is now used
by employees of the insurance company, since no intermediaries are involved in

Using XML Transformations for Enterprise Architectures 49

Request for
insurance

Formalize
request

Create contractInvestigate
Register

policy
Sign contract

Check
contract

Print contractsView requests Edit policiesEdit requests

Fig. 6. A Service View of ArchiSurance

selling insurance products anymore. Actually, the company would like to phase
out this application.

In Figure 6, a Service View is presented: the process for selling products is
shown again, now together with the services that are used within each step.

4.1 An XML Description of the Example

Although the four views (Business View, Process View, Application View, Ser-
vice View) are depicted separately, they are clearly related to each other via the
concepts they contain. In this small example, it is possible to imagine the big
picture in which all ArchiSurance information is contained.

Within the ArchiMate project, an XML Schema has been developed which
can be used for storage or exchange of architectural information. Based on this
Schema, we have created a single XML document that contains all information
about ArchiSurance. The use of a single document is no problem in this small
case, but when architectural models are larger, a single document could be dif-
ficult to maintain. Investigating the use of more XML documents for a single
architectural model is a topic for future research.

For illustration, a fragment of the XML document is shown below. It contains
the XML equivalent of Figure 3.

<role id="002" name="Customer"/>
<role id="003" name="Insurance Company"/>
<collaboration id="004" name="Negotiation"/>
<collaboration id="006" name="Contracting"/>
<composition id="035" name="composition">

<from href="004"/>
<to href="002"/>

</composition>
<composition id="036" name="composition">

<from href="004"/>
<to href="003"/>

</composition>
<composition id="041" name="composition">

<from href="006"/>
<to href="002"/>

</composition>
<composition id="042" name="composition">

<from href="006"/>
<to href="003"/>

</composition>

50 A. Stam et al.

5 Selection and Visualization

The initial XML document contains the concepts and relations based on the
ArchiMate metamodel. It does not contain information about which concepts
are relevant for which views, nor does it describe how to visualize the concepts.
We can use RML rules to formally define selection and visualization schemes, as
will be illustrated in the following sections.

5.1 Selection

Within a single view, usually a selection of the entire set of concepts is made. For
example, the Business View in our example only contains roles and collaborations
and abstracts from all other related concepts. For this purpose, RML rules have
to filter out all unnecessary information from the XML document and thus create
a new document that only contains those concepts and relations that are relevant
for the view. By writing down the RML rules, we ensure that we do not omit
certain concepts, which often happens when this work is being done by hand.

We have created the following “recipe” for selection:

1. add a specific selection element to the XML document which is going to
contain the selected concepts;

2. iterate over the document and move all relevant concepts into the specific
selection element;

3. iterate over the document and move all relevant relations into the specific
selection element;

4. remove all relations within the selection element that have one “dangling”
end, i.e. that are related at one side to a concept that does not belong to
the selection;

5. remove all elements outside the selection element.

Note that the step for removing relations with one “dangling” end out of the
selection is necessary, because one relation type (e.g. association) can be defined
between several different concept types. Nevertheless, this recipe is fairly easy
to understand and can be specified by architects themselves for any kind of
selection they want to make.

The following RML rule illustrates the way all instances of a specific concept
are included in the selection:

<div class="rule">
<div class="antecedent">

<model>
<rml-list name="list1"/>
<collaboration rml-others="other">

<rml-list name="childs"/>
</collaboration>
<rml-list name="list2"/>
<selection>

<rml-list name="selection"/>
</selection>
<rml-list name="list3"/>

</model>
</div>

Using XML Transformations for Enterprise Architectures 51

<div class="consequence">
<model>

<rml-use name="list1"/>
<rml-use name="list2"/>
<rml-use name="list3"/>
<selection>

<rml-use name="selection"/>
<collaboration rml-others="other">

<rml-use name="childs"/>
</collaboration>

</selection>
</model>

</div>
</div>

5.2 Visualization

One of the research questions is about the creation of a “dumb” model viewer,
i.e., it is ignorant of any architectural language. By this, we can illustrate the way
in which XML transformations can be used for creating several visualizations for
a single XML document.

For this purpose, we made a specific XML schema which can be interpreted by
a model viewer without having to know anything about the ArchiMate language.
The following XML fragment illustrates this language.

<container height="80" id="014" type="interaction" width="100" >
<box color="khaki1" height="80" type="round" width="100" x="0" y="0" z="0" />
<label fieldname="name" halign="center" text="register policy" x="50" y="40" z="1" />
<icon height="15" type="splitcircle" width="15" x="75" y="10" z="1" />

</container>

<container height="80" id="013" type="interaction" width="100" >
<box color="khaki1" height="80" type="round" width="100" x="0" y="0" z="0" />
<label fieldname="name" halign="center" text="sign contract" x="50" y="40" z="1" />
<icon height="15" type="splitcircle" width="15" x="75" y="10" z="1" />

</container>

<arrow from="013" id="020" to="014" type="triggering" >
<line type="solid" width="1" z="0" />
<headarrowtip size="10" type="filledarrow" z="1" />

</arrow>

The intermediate visualization language has two main constructs: containers
and arrows.

Containers are rectangular areas in which several visual elements can be
placed. The exact location of those visual elements can be defined relative to
the size and position of the container. Each container has a unique identi-
fier which can be used to refer to the original elements in the architectural
description.

Arrows are linear directed elements. They have a head and a tail, which both
have to be connected to containers (via their identifiers). They also have unique
identifiers themselves.

In the example above, two containers and one arrow are defined. In Figure 7
the output of the interpretation of this XML fragment by the model viewer is

52 A. Stam et al.

shown. As can be seen in the XML fragment, some visual elements, like “split
circle”, are built into the model viewer. This has mainly been done for reasons
of efficiency.

Register
policySign contract

Fig. 7. Example of the visualization technique used

For the transformation of the original XML model to the visualization infor-
mation, we have created scripts that transform each concept into its correspond-
ing visualization. An example is given below. This example rule transforms an
interaction concept into a visual representation.

<div class="rule">
<div class="antecedent">

<interaction id="rml-id" name="rml-name" color="rml-color"/>
</div>
<div class="consequence">

<container id="rml-id" type="interaction" width="100" height="80" color="rml-color">
<box x="0" y="0" z="0" width="100" height="80" color="khaki1" type="round"/>
<label x="50" y="40" z="1" halign="center" text="rml-name" fieldname="name"/>
<icon x="75" y="10" z="1" width="15" height="15" type="splitcircle"/>

</container>
</div>

</div>

The technique presented here is quite powerful yet easy to understand: from
the same architectural description, it is possible to define different visualization
styles, like ArchiMate (which is used in the running example), UML[2], etc. In the
context of enterprise architectures, this is especially useful since architects often
want to have their own style of visualization (for cultural and communication
reasons within organizations), without having to conform to a standard defined
outside the organization. They can do this in a formal way by capturing their
visualizations in XML transformation rules.

6 Analysis

Next to selection and visualization, we investigated ways to use XML transfor-
mations for analysis of enterprise architectures. Our aim is to create a technique
for impact analysis, i.e., given an entity within the architectural description
which is considered to change, which other entities are possibly influenced by
this change?

Using XML Transformations for Enterprise Architectures 53

We have created the following recipe for this analysis:

1. add a specific selection element to the XML document which is going to
contain the concepts that are considered to be possibly influenced;

2. add a special attribute to the element describing the entity under consider-
ation, which can be used for, e.g., visualisation (in order to make it have a
red color, for example);

3. make the element describing the entity under consideration a child of the
selection element;

4. iterate over all relations included in the analysis and, if appropriate, add a
special attribute to them and make them a child of the selection element;

5. iterate over all concepts and, if appropriate, add a special attribute to them
and make them a child of the selection element;

6. repeat the previous two steps until the output is stable;
7. remove the selection element, so that we have one list of concepts and rela-

tions, of which some concepts have a special attribute which indicates that
the change possibly has impact on them.

An example of the output of the analysis is given below. The component
“InterMed” is considered to change. It has two new attributes. The selected at-
tribute indicates that it belongs to the entities which are possibly influenced by
the change, while the special attribute indicates that this entity is the unique
entity considered to change. The remaining elements describe concepts and rela-
tions that are all selected, because they are directly or indirectly related to the
“InterMed” component.

<component id="082" name="InterMed" selected="yes" special="yes"/>

<composition id="104" name="composition" selected="yes" >
<from href="082" />
<to href="094" />

</composition>

<interface id="094" name="Interface" selected="yes" />

<assignment id="112" name="assignment" selected="yes" >
<from href="094" />
<to href="090" />

</assignment>

<service id="090" name="edit requests" selected="yes" />

Within Figure 8 and Figure 9, the output of the model viewer is given for
two views. The change of color is done by the visualization rules, based on the
attributes added during the analysis.

By performing impact analysis in the way presented above, we treat the set of
architectural concepts as a graph with nodes and edges and define that a node
A has impact on another node B when A is selected and there is a relation from
A to B. But we could easily change our interpretation of the term “impact”,
for example by introducing several kinds of impact (e.g., extend, replace, delete)
or treating different kind of relations between nodes in a different way. In all

54 A. Stam et al.

PrintWise ArchiSure InterMed

Print contracts View requests Edit policies Edit requests

Fig. 8. The Application View with a selected InterMed application

Customer
Insurance
Company

Negotiation Contracting

Fig. 9. The resulting Business View after the impact analysis

cases, our interpretation of the term “impact” is formally defined in the XML
transformation rules.

7 Conclusions

The research reported on in this paper shows promising results. The use of
XML transformation techniques for selection, visualization and analysis of en-
terprise architectures has several benefits: XML is well-known, the transforma-
tion techniques are generic and tools for it are improving rapidly. Transfor-
mation rules are well understandable and can be adapted quickly for specific
needs or purposes. The application of XML transformation techniques for en-
terprise architectures is a good example of the way in which formal techniques,
in this case, formally defined transformation rules, can be applied effectively by
end users in the context of enterprise architecture, i.e. the enterprise architects
themselves.

Based on the reported investigations, our answers to the research questions
set out earlier are the following:

Question 1. Given a set of architectural information described in a single XML
document. How can we use XML transformations to select a subset of this in-
formation for a specific architectural view?

Using XML Transformations for Enterprise Architectures 55

This can be done via transformation rules which filter out certain concepts and
create a new XML document containing a selection out of the original document.
These transformation rules are easy to understand and can be defined by the
architects themselves to create their own selections.

Question 2. How can we transform an XML document containing architectural
information into another XML document containing visual information in terms
of boxes, lines, etc.? How can we build a model viewer which interprets this visual
information without having to know anything about the architectural language
used?

What is needed for this, is a separate “intermediate” language for visualiza-
tion information. Via XML transformations, we can transform an ArchiMate
XML document into an XML document containing only visual elements. The
latter document can then be interpreted by a model viewer which only has to
know how to interpret the visual elements in this document. By separating the
visualization step from the viewer, architects gain much often demanded flexibil-
ity: they are able to create their own visualizations in a formal way, i.e. defined
in transformation rules.

Question 3. How can we use XML transformations to perform our specific form
of impact analysis?

We can do this analysis by iterative selection of the elements which have a
relation with the “element to be changed”. By including or excluding certain
relation types, architects gain insight in the mutual dependencies between the
entities within an architecture.

Acknowledgments. This paper is based on research in the context of the Archi-
Mate1 project, a research initiative that aims to provide concepts and techniques
to support architects in the visualization and analysis of integrated architectures.
The ArchiMate consortium consists of ABN AMRO, Stichting Pensioenfonds
ABP, the Dutch Tax and Customs Administration, Ordina, Telematica Insti-
tute, CWI, University of Nijmegen, and LIACS.

References

1. A. Berlea and H. Seidl. fxt a transformation language for XML documents. Journal
of Computing and Information Technology, 10(1):19–35, 2002.

2. G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling Language Refer-
ence Manual. Addison Wesley, 1999.

3. The Rule Markup Initiative community. URL: http://www.dfki.uni-kl.de/
ruleml/.

4. World Wide Web Consortium. Extensible markup language (XML). URL:
http://www.w3.org/XML/.

5. World Wide Web Consortium. XSL transformations (XSLT) version 1.0, W3C
recommendation, November 1999. URL: http://www.w3c.org/TR/xslt.

1 http://archimate.telin.nl

56 A. Stam et al.

6. J. Jacob. The rule markup language: a tutorial. URL: http://homepages.cwi.nl/
j̃acob/rml

7. H. Jonkers, R. van Buuren, F. Arbab, F.S. de Boer, M.M. Bonsangue, H. Bosma,
H. ter Doest, L. Groenewegen, J. Guillen-Scholten, S. Hoppenbrouwers, M. Jacob,
W. Janssen, M. Lankhorst, D. van Leeuwen, E. Proper, A. Stam, L. van der Torre,
and G. Veldhuijzen van Zanten. Towards a language for coherent enterprise archi-
tecture description. In M. Steen and B.R. Bryant, editors, Proceedings 7th IEEE
International Enterprise Distributed Object Computing Conference (EDOC 2003),
pages 28–39. IEEE Computer Society Press, 2003.

8. James McGovern, Scott W. Ambler, Michael E. Stevens, James Linn, Vikas Sharan,
and Elias K. Jo. A Practical Guide to Enterprise Architecture. Prentice Hall PTR,
2003.

9. M. Pettersson. RML - a new language and implementation for natural semantics.
In M. Hermenegildo and J. Penjam, editors, Proceedings of the 6th International
Symposium on Programming Language Implementation and Logic Programming,
PLILP, volume 884 of LNCS, pages 117–131. Springer-Verlag, 1994.

10. The Archimate Project. URL: http://www.telin.nl/NetworkedBusiness/
Archimate/ENindex.htm.

11. IEEE Computer Society. IEEE std 1471-2000: IEEE recommended practice for
architectural description of software-intensive systems, Oct. 9, 2000.

Classification and Utilization of Abstractions for

Optimization

Dan Quinlan, Markus Schordan,
Qing Yi, and Andreas Saebjornsen

1 Lawrence Livermore National Laboratory, USA
{dquinlan, yi4}@llnl.gov

2 Vienna University of Technology
markus@complang.tuwien.ac.at

3 University of Oslo, Norway
andreas.sabjornsen@fys.uio.no

Abstract. We define a novel approach for optimizing the use of libraries
within applications. We propose that library-defined abstractions be an-
notated with additional semantics to support their automated optimiza-
tion. By leveraging these additional semantics we enable specialized opti-
mizations of application codes which use library abstractions. We believe
that such an approach entails the use of formal methods.

It is a common perception that performance is inversely proportional
to the level of abstraction. Our work shows that this is not the case if
the additional semantics of library-defined abstractions can be leveraged.
We describe ROSE, a framework for building source-to-source translators
that perform high-level optimizations on scientific applications. ROSE al-
lows the recognition of library abstractions and the optimization of their
use in applications. We show how ROSE can utilize the semantics of user-
defined abstractions in libraries within the compile-time optimization of
applications.

1 Introduction

User-defined abstractions help software developers be more productive by encap-
sulating redundant details. Unfortunately the use of these abstractions usually
introduces a penalty in performance due to insufficient optimizations from the
compilers. We define a performance penalty as the difference between the per-
formance of the direct use of the user-defined abstraction and any semantically
equivalent lower level representation. In order to apply optimizations to user-
defined abstractions it is often required that these abstractions satisfy certain
properties (e.g. operators are side-effect free, array elements are not aliased,
etc.). When the compiler cannot verify such properties using program analysis it
conservatively disables many performance optimizations. Manually introducing
optimization avoid the performance penalty but significantly lower programmer
productivity and tie the application to individual computer architectures. Our
approach aims at fully automating such optimizations.

T. Margaria and B. Steffen (Eds.): ISoLA 2004, LNCS 4313, pp. 57–73, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

58 D. Quinlan et al.

We propose to use annotations to bridge the gap between the semantics im-
plied by the compiler and the additional semantics known only by the library
developer who implements the user-defined abstractions. We present a compile-
time approach for the optimization of scientific applications using the semantics
of library abstractions. We use an array abstraction from the A++/P++ array
class library [1] as an example to demonstrate our approach toward the general
annotation of user-defined abstractions.

Where we have defined a mechanism to optimize the use of a category of ab-
stractions (array abstractions), our goal is to define a more general mechanism
to annotate arbitrary abstractions with semantics supporting their optimiza-
tions. We have addressed numerous aspects of the more general problem within
the current work. While current work supports only the manual introduction
of annotations, future work will explore ways to automate the introduction of
such annotations. This paper describes work that has been done to develop an
annotation based approach to guide the automated optimization of user-defined
abstractions, starting with a motivating example.

1.1 Motivating Example

Figure 1 shows an example of a high-level abstraction from the A++/P++
library [1]. It is an array abstraction which is used within current scientific
applications and forms an appropriate target for optimization.

The class Range defines a one dimensional iteration space with fixed stride.
The class floatArray defines an array abstraction where Range objects serve as
parameters to several operators (e.g +, =, ()) for iterating over an array. In the
example main function, we show how these classes can be used to compute a new
value for each point in the array. Using such abstractions programmers can ex-
press complex computations without explicitly introducing loops which permits
greater flexibility for optimization (e.g. parallelization, layout optimization, com-
munication optimization, etc.). In the example we use a two-dimensional array
with type double as element type.

In figure 1, the function main consists of four lines. In line #2 two non-
aliased floatArrays A and B, each of size 100x100, are created. In line #3,
two Range objects I and J, defining ranges from 1 to 98 with stride 1 are cre-
ated. In line #4 the computation is defined. For each point within the specified
ranges, a new value is computed on the right hand side as the sum of the four
neighbors in horizontal and vertical direction. In general, an arbitrary expres-
sion can be specified on the right hand side, in particular using the operators
available in the class floatArray. In this simple example we have restricted the
available functions to + and sin. The full class consists of about 80 different
operators.

In order to optimize this computation the compiler must know both the the
aliasing patterns between different array objects and the semantics of array oper-
ations.We shall show how such properties can be specified using our annotation
language in section 4.

Classification and Utilization of Abstractions for Optimization 59

class Range {
public:

Range (int base, int bound, int stride);
Range operator+ (int i);
Range operator- (int i);

};
class floatArray {
public:

floatArray (int i, int j);
floatArray & operator= (const floatArray & X);
friend floatArray operator+ (const floatArray & X, const floatArray & Y);
floatArray operator() (const Range & I, const Range & J);
friend floatArray & sin (const floatArray & X);

};
int main () { /* #1 */

floatArray A(100,100), B(100,100); /* #2 */
Range I(1,98,1), J(1,98,1); /* #3 */
A(I,J) = B(I-1,J) + B(I+1,J) + B(I,J-1) + B(I,J+1); /* #4 */

}

Fig. 1. Example: Code fragment of header file and program to be optimized

In the remaining sections we present the ROSE architecture [2, 3] used for
implementing the presented approach, the annotation based mechanism for the
optimization of array abstractions and performance results showing the signifi-
cant potential for such optimizations.

2 Architecture

The ROSE infrastructure offers several components to build a source-to-source
optimizer. A complete C++ front end is available that generates an object-
oriented annotated abstract syntax tree (AST) as an intermediate representa-
tion. Optimizations are performed on the AST. Several components can be used
to build the mid end: a predefined traversal mechanism, an attribute evaluation
mechanism, transformation operators to restructure the AST, and pre-defined
optimizations. Support for library annotations is available by analyzing prag-
mas, comments, or separate annotation files. A C++ back end can be used to
unparse the AST and generate C++ code. An overview of the architecture is
shown in Fig. 2). Steps 1-7, which can be performed by a ROSE source-to-source
optimizer, are described in the following sections.

2.1 Front End

We use the Edison Design Group C++ front end (EDG) [4] to parse C++ pro-
grams. The EDG front end generates an AST and performs a full type evaluation
of the C++ program. This AST is represented as a C data structure. We trans-
late this data structure into an object-oriented abstract syntax tree, Sage III,
based on Sage II and Sage++[5]. Sage III is used by the mid end as intermedi-
ate representation. The annotated library interfaces are header files which are
included by the application program. The AST passed to the mid end represents
the program and all the header files included by the program (see Fig. 2, step 1
and 2).

60 D. Quinlan et al.

AST processing
Traversal and attribute computation

Query operators
mode: AST readonly

Transformation operators
mode: AST read/write

Front End

Back End

Middle End

Source fragment
AST fragment

AST fragment

AST fragment
Source fragment

Application

AST

AST

Optimized application

(1)

(2)
(3)

(3)

(4)

(5)
(5)

(6)

(7)

Annotated library interface(1)

Fig. 2. ROSE Source-To-Source architecture

2.2 Mid End

The mid end permits the restructuring of the AST and performance improv-
ing program transformations. Results of program analysis are made available as
annotations of AST nodes. The AST processing mechanism computes inherited
and synthesized attributes on the AST (see section 2.4 for more details). ROSE
also includes a scanner which operates on the token stream of a serialized AST
so that parser tools can be used to specify program transformations in semantic
actions of an attribute grammar. The grammar is the abstract grammar, gener-
ating the set of all ASTs. More details on the use of attribute grammar tools, in
particular Coco/R [6] and Frankie Erse’s C/C++ port, can be found in [3].

An AST restructuring operation specifies a location in the AST where code
should be inserted, deleted, or replaced. Transformation operators can be built
using the AST processing mechanism in combination with AST restructuring op-
erations. In Fig. 2 steps 3,4,5 show how the ROSE architecture also uses source
code fragments and AST fragments in the specification of program transforma-
tions. A fragment is a concrete piece of code or AST. A program transformation
is defined by a sequence of AST restructuring operations whereas transforma-
tion operators compute such restructuring sequences. Transformations can be
parameterized to define conditional restructuring sequences. This is discussed in
detail in section 3.

Classification and Utilization of Abstractions for Optimization 61

2.3 Back End

The back end unparses the AST and generates C++ source code (see Fig. 2,
steps 6 and 7). It can be specified to unparse either all included (header) files or
only the source file(s) specified on the command line. This feature is important
when transforming user-defined data types, for example, when adding generated
methods. Comments are attached to AST nodes and unparsed by the back end.

2.4 AST Processing

The AST processing components permit traversing the AST and computing at-
tributes for each node of the AST. The computed values of attributes can be at-
tached to AST nodes as annotations and used in subsequent optimizations. Con-
text information can be passed down the AST as inherited attributes and results of
computations on a subtree can be computed as synthesized attributes (passing in-
formation upwards in the tree). Examples for values of inherited and synthesized
attributes are the nesting level of loops, the scopes of associated pragma state-
ments, etc. These annotations can be used in transformations to decide whether
a restructuring operation can be applied safely. AST processing is used by query
operators and transformation operators to compute information according to the
structure of the AST and can also be based on annotations computed by other
operators. Using this mechanism library developers can build complex high-level
transformation operators from lower-level transformation operators.

2.5 AST Query Operators

Building on top of the methods in section 2.4, AST query operators are provided
that perform numerous types of predefined queries on the AST. AST query
operators may be composed to define complex queries. This mechanism hides
some of the details of the AST traversal and is simple and extensible.

2.6 AST Annotations

Source code annotations are represented within the AST as persistent attributes,
which can be directly attached to AST nodes. Such attributes can be accessed
by subsequent AST processing steps and permit the communication between
different AST processing phases. Annotations within the AST include type in-
formation obtained from the EDG front end and user-defined attributes, which
specify additional semantic information. The additional information can be uti-
lized in transformations to decide whether a restructuring operation is applica-
ble. Annotations can be introduced using several mechanisms supported within
ROSE: pragmas, comments, and a separate annotation file mechanism.

3 Transformation Operators

An optimization requires program analysis to determine whether the AST can
be restructured such that the semantics of the program are preserved. For the

62 D. Quinlan et al.

analysis, the AST processing mechanism allows the computation of attributes.
A transformation operator includes a predicate and a sequence of AST restruc-
turing operators. The predicate uses the results of the program analysis and
additionally the information provided by annotations. The predicate has to en-
sure that the restructuring sequence can be applied safely. Therefore we combine
conservative program analysis with the additional information from annotations
to ensure its correctness. Additionally we also provide operations that enforce a
certain transformation, such as the inline annotation.

Only if the predicate is true the restructuring operators are applied. The se-
quence of AST restructuring operations can be computed as attributes by the
AST processing mechanism or by using an attribute grammar tool, as demon-
strated in [3]. Bottom Up Rewrite Systems (BURS), such as burg [7], can be
used to operate on the AST. The AST is implemented such that for each node
a unique number is available which can be used as operator identifier by such
tools. The opportunity to choose between traversals, the AST processing mech-
anism, attribute grammar tools, or BURS tools allows selection of the most
comprehensive specification of a transformation.

A restructuring sequence consists of fragment operators, and as operands
AST fragments (subtrees), strings (concrete pieces of code), or AST locations
(denoting nodes in the AST).

3.1 Fragment Operators

A fragment operator transforms a given fragment. It permits performing a basic
restructuring operation such as insert, delete, or replace on an AST. The target
location of an operation in the AST can be absolute or relative (to another
absolute location).

A valid fragment can be specified as source fragment or AST fragment. Whether
a source fragment is valid with respect to an absolute location is determined au-
tomatically. From the syntactic context of the absolute location the prefix, s�, is
computed such that all declarations, opening scopes, and function headers are in-
cluded in the prefix. The postfix, s�, consists of all the syntactic entities of closing
scopes (for nested scopes such as for-loops, while-loops, function definitions, etc.).

Definition 1 (Valid Source Fragment). A source fragment s� is valid with
respect to an absolute location labs in an AST if it can be completed to a legal pro-
gram from the syntactic and semantic context of the absolute location such that
the completed program has correct syntax and semantics, symb. s� is valid with
respect to labs if frontend(s+s�+s�) with s = prefix(labs), s� = postfix(labs)
succeeds.

For example, if we want to insert a source fragment into the AST, we spec-
ify a target location as an absolute location, labs, and from that target loca-
tion the prefix and postfix can be computed to complete the source fragment
to a legal program. Then we can invoke the frontend to obtain the translated
AST fragment. Thus, for a valid source fragment s� we can always generate a

Classification and Utilization of Abstractions for Optimization 63

corresponding AST fragment, ast�. The translation of fragments is an extensive
operation. For example, in our C++ infrastructure the AST fragment ast� has
all templates instantiated and types are determined for all expressions.

Operator Description

insert :
Lrel × Labs × ASTs → ASTs

Insertion of AST fragment at relative location
(step 4 in Fig. 2)

delete :
Labs × ASTs → ASTs

Deletion of AST subtree at absolute location
in AST (step 4 in Fig. 2)

fragment-frontend :
Labs × ASTs × S → ASTs

Translate source fragment with respect to ab-
solute location in AST to corresponding AST
fragment (steps 3,5 in Fig. 2)

fragment-backend :
Labs × ASTs → S

Unparse AST fragment at absolute location in
AST to source fragment (step 5 in Fig. 2)

locate :
Lrel × Labs × ASTs → Labs

Map relative location with respect to absolute
location in AST to absolute location in same
AST

replace :
Lrel × Labs × ASTs × ASTs → ASTs

Replacement of AST fragment at relative lo-
cation (step 4 in Fig. 2)

replace :
Labs × ASTs × S → ASTs

Replacement of AST subtree at absolute loca-
tion in AST by AST fragment corresponding
to source fragment (steps 3,4,5 in Fig. 2)

Fig. 3. Fragment operators which allow to modify the AST by using a relative loca-
tion, an AST fragment, or a source fragment. Transformation operators are defined as
sequence of fragment operations.

In Fig. 3 an overview of the most important fragment operators is given. Based
on the handling of code fragments, the transformation operators can be defined
as follows. Let ASTs denote the set of ASTs, Lrel the set of relative locations
in an AST, Labs the set of absolute locations, i.e. the nodes in an AST, and
S the set of valid source fragments with respect to an absolute location in the
AST. The fragment operators allow rewriting the AST by specifying absolute
or relative target locations. A relative location lrel allows the specification of a
target location in an AST relative to an absolute location labs. The operator
locate maps a relative location lrel to an absolute location labs in a given AST.
Relative locations are used to simplify the specification of the target location of
a fragment operation. For example, if a statement can be hoisted out of a loop
it suffices to specify as target location the “statement in outer scope right before
the current loop”. The location “current loop” is specified as absolute location
parameter to locate. We have defined several classifications of such relative tar-
get locations which are useful in making transformations more compact. The
insert-operation is an example of using a relative target location. The operator
fragment-frontend allows translation of source fragments to AST fragments as
explained above. It also requires step 5 to compute the necessary prefix and

64 D. Quinlan et al.

postfix to complete the source fragment to eventually call the front end for the
completed program. The unparsing of an AST fragment, fragment-backend re-
quires invoking the back end. The last operator listed in Fig. 3, replace, allows
specification of the new AST fragment, ast, which replaces an AST subtree at
location Labs in this AST, to be specified by a source fragment, s. This requires
all three steps 3,4,5 (see Fig. 2). Step 5 is required to unparse parts of the AST
to form the prefix, s, and postfix, s�. In Step 3 the completed source fragment
is translated to an AST and the corresponding AST fragment, ast, is extracted.
Step 4 is the actual rewriting of the AST and the replacement of the AST sub-
tree with the new AST fragment is performed. Based on this basic operations
on fragments, transformation operators can be defined.

4 Predefined Optimizations

A large set of compiler optimizations, including both reordering transformations
such as loop fusion/fission and blocking, and statement level transformations
such as redundant expression elimination, can be applied to improve the perfor-
mance of applications. Most of these optimizations are under certain safety and
profitability constraints, which in turn require specific knowledge of the involved
operations. However, because user-defined abstractions often introduce function
calls with unknown semantics into an application, many of these compiler opti-
mizations are not performed due to the unknown semantics.

In this section we present techniques that extend the applicability of prede-
fined compiler optimizations. By defining an annotation language, which allows
programmers to declare that certain abstractions satisfy the extended require-
ments of predefined compiler optimizations, we provide an open interface for the
programmers to communicate with and to control the underlying optimizations.
A preliminary version of our annotation language is shown in Figure 4. In the
following, we use the annotation examples in Figure 5 to further illustrate the
techniques.

4.1 Enabling Transformations

One of the most significant enabling transformations for library abstractions is
inlining, which replaces function calls with their implementations within the call-
ing contexts. Suppose the compiler has access to all the source code of a library.
Theoretically, inlining the library code could permit the necessary program anal-
ysis and thus allow the compiler to discover the semantics of all abstractions,
dismissing the concerns for obscure function calls.

However, the current compilation techniques cannot yet fully bridge the gaps
between abstraction semantics and their implementation details. Specifically,
reading the library code exposes the underlying implementations, but does not
readily permit a discovery of the semantics, such as properties of commutativity
and associativity. As the result, we complement inlining transformations with
semantics annotations which allows library programmers to define the semantics
and control the optimizations of their abstractions.

Classification and Utilization of Abstractions for Optimization 65

<annot> ::= <annot1>
| <annot1>;<annot>

<annot1> ::= class <cls annot>
| operator <op annot>

<cls annot> ::= <clsname>:<cls annot1>;
<cls annot1>::= <cls annot2>

| <cls annot2> <cls annot1>
<cls annot2>::= <arr annot>

| inheritable <arr annot>
| has-value { <val def> }

<arr annot>::= is-array{ <arr def>}
| is-array{define{<stmts>}<arr def>}

<op annot> ::= <opdecl> : <op annot1> ;
<op annot1> ::= <op annot2>

| <op annot2> <op annot1>

<op annot2> ::= modify <namelist>
| new-array (<aliaslist>){<arr def>}
| modify-array (<name>) {<arr def>}
| restrict-value {<val def list>}
| read <namelist>
| alias <nameGrouplist>
| allow-alias <nameGrouplist>
| inline <expression>

<arr def> ::= <arr attr def>
| <arr attr def> <arr def>

<arr attr def> ::= <arr attr>=<expression>;
<arr attr> ::= dim | len (<param>)

| elem(<paramlist>)
| reshape(<paramlist>)

<val def> ::= <name>; | <name>;<val def>
| <name> = <expression> ;
| <name> = <expression> ; <val def>

Fig. 4. Annotation Grammar

In our annotation language, the programmers can not only customize com-
pilers to inline certain function calls, they can also define additional properties
of their abstractions in order to enable specific predefined optimizations. As
example, the inline annotation in Figure 4 is essentially a “semantics inlin-
ing” directive for user-defined functions. In our running example, we use it in
the function annotations of class floatArray (see Fig. 5). The function “floatAr-
ray::operator()(int)” is specified to be inlined and is declared as a subscripted
access of the current f loatArray object.

4.2 Loop Transformations

As modern computers become increasingly complex, compilers often need to
extensively reorder the computation structures of applications to achieve high
performance. One important class of such optimizations is the set of loop trans-
formation techniques, such as loop blocking, fusion/fission, and interchange, that
has long been applied to Fortran scientific applications. Within ROSE, we have
implemented several aggressive loop transformations and have extended them
for optimizing loops operating on general object-oriented user abstractions.

Traditional Fortran loop transformation frameworks recognize loops operat-
ing on Fortran arrays, that is, arrays with indexed element access and with no
aliasing between different elements. After computing the dependence relations
between iterations of statements, they then reorder the loop iterations when
safe and profitable. To extend this framework, we use an array-abstraction in-
terface to communicate with our loop optimizer the semantics of user-defined
array abstractions in C++. The array-abstraction interface both recognizes user-
defined array abstractions and determines the aliasing relations between array
objects.

In Figure 5, the is-array annotation declares that the class f loatArray has the
pre-definedFortran array semantics.The array canhaveatmost 6dimensions,with
the length of each dimension i obtained by calling member function getLength(i),

66 D. Quinlan et al.

class floatArray:
inheritable is-array { dim = 6; len(i) = this.getLength(i); elem(i$x:0:dim-1) = this(i$x);
reshape(i$x:0:dim-1) = this.resize(i$x); }; has-value { dim; len$x:0,dim-1=this.getLength(x); }

operator floatArray::operator =(const floatArray& that):
modify {this}; read {that}; alias none;
modify-array (this) { dim = that.dim; len(i) = that.len(i); elem(i$x:1:dim) = that.elem(i$x); };

operator +(const floatArray& a1,double a2): modify none; read{a1,a2}; alias none;
new-array () { dim = a1.dim; len(i) = a1.len(i); elem(i$x:1:dim) = a1.elem(i$x)+a2; };

operator floatArray::operator () (const Range& I):
modify none; read{I}; alias { (result, this) }; restrict-value { this = { dim = 1; };
result = {dim = 1; len(0) = I.len;}; };
new-array (this) { dim = 1; len(0) = I.len; elem(i) = this.elem(i∗I.stride + I.base); };

operator floatArray::operator() (int index) : inline { this.elem(index) };
restrict-value { this = { dim = 1; };};

class Range: has-value { stride; base; len; };
operator Range::Range(int b,int l,int s): modify none; read { b, l, s}; alias none;

restrict-value { this={base = b;len= l;stride= s;};};
operator + (const Range& lhs, int x) : modify none; read {lhs,x}; alias none;

restrict-value { result={stride=lhs.stride; len = lhs.len; base = lhs.base + x; };};

Fig. 5. Annotations for classes floatArray and Range

and with each element of the array accessed through the “()” operator. Here the
expression i$x : 0 : dim − 1 denotes a list of parameters, i1,i2,...,idim−1. In the
grammar the nonterminal<paramlist> corresponds to such expressions. Similarly,
the operator “floatArray::operator= (const floatArray& that)” is declared to have
modify-array semantics; that is, it performs element-wise modification of the cur-
rent array. The operator “+(const floatArray& a1, double a2)” is declared to have
the new-array semantics; that is, it constructs a new array with the same shape
as that of a1, and each element of the new array is the result of adding a2 to the
corresponding element of a1. Similarly, the operator “floatArray::operator()(const
Range& I)” constructs a new array that is aliased with the current one by selecting
only those elements that are within the iteration range I.

Because the safety of loop optimizations is determined by evaluating the
side-effects of statements, our annotation language also includes declarations
regarding the side-effects of function calls. Specifically, the mod annotation de-
clares a list of locations that might be modified by a function call, the read
annotation declares the list of locations being used, and the alias annotation
declares the groups of names that might be aliased to each other. These an-
notations directly communicate with our global alias and side-effect analysis
algorithms.

4.3 Statement Level Optimizations

To generate efficient code, most compilers eliminate redundant computations or re-
place expensive computations with cheaper ones. Commonly used optimizations
include constant propagation, constant folding, strength reduction, redundant ex-
pression elimination, and dead code elimination. Most of these optimizations

Classification and Utilization of Abstractions for Optimization 67

void interpolate2D (floatArray & fineGrid, floatArray & coarseGrid)
{

int fineGridSizeX = fineGrid.getLength(0);
int fineGridSizeY = fineGrid.getLength(1);
int coarseGridSizeX = coarseGrid.getLength(0);
int coarseGridSizeY = coarseGrid.getLength(1);
// Interior fine grid points
Range If (2,fineGridSizeX-2,2); Range Jf (2,fineGridSizeY-2,2);
Range Ic (1,coarseGridSizeX,1); Range Jc (1,coarseGridSizeY-1,1);
// separate loops to be fused
fineGrid(If,Jf) = coarseGrid(Ic,Jc);
fineGrid(If-1,Jf) = (coarseGrid(Ic-1,Jc) + coarseGrid(Ic,Jc)) / 2.0;
fineGrid(If,Jf-1) = (coarseGrid(Ic,Jc-1) + coarseGrid(Ic,Jc)) / 2.0;
fineGrid(If-1,Jf-1) = (coarseGrid(Ic-1,Jc-1) + coarseGrid(Ic-1,Jc) +

coarseGrid(Ic,Jc-1) + coarseGrid(Ic,Jc)) / 4.0;
}

Fig. 6. Example: High-Level user code in function interpolate2D using classes floatAr-
ray and Range

void interpolate2D(class floatArray &fineGrid,class floatArray &coarseGrid)
{

int _var_9; int _var_8; int _var_7; int _var_6; int _var_5;
int _var_4; int _var_3; int _var_2; int _var_1; int _var_0;
int fineGridSizeX = (fineGrid.length(0));
int fineGridSizeY = (fineGrid.length(1));
int coarseGridSizeX = (coarseGrid.length(0));
int coarseGridSizeY = (coarseGrid.length(1));
// Interior fine grid points
class Range If(2,_var_2 = fineGridSizeX - 2,2);
class Range Jf(2,_var_3 = fineGridSizeY - 2,2);
class Range Ic(1,coarseGridSizeX,1); class Range Jc(1,coarseGridSizeY - 1,1);
for (_var_1 = 0; _var_1 <= -1 + (_var_3 + -1 * 2 + 1) / 2; _var_1 += 1) {
for (_var_0 = 0; _var_0 <= -1 + (_var_2 + -1 * 2 + 1) / 2; _var_0 += 1) {

fineGrid.elem(_var_0 * 2 + 2,_var_1 * 2 + 2)
= coarseGrid.elem(_var_0 * 1 + 1,_var_1 * 1 + 1);

}
}
for (_var_5 = 0; _var_5 <= -1 + (_var_3 + -1 * 2 + 1) / 2; _var_5 += 1) {
for (_var_4 = 0; _var_4 <= -1 + (_var_2 + -1 * 2 + 1) / 2; _var_4 += 1) {

fineGrid.elem(2 + -1 * 1 + _var_4 * 2,_var_5 * 2 + 2)
= (coarseGrid.elem(1 + -1 * 1 + _var_4 * 1,_var_5 * 1 + 1)
+ coarseGrid.elem(_var_4 * 1 + 1,_var_5 * 1 + 1)) / 2.0;

}
}
for (_var_7 = 0; _var_7 <= -1 + (_var_3 + -1 * 2 + 1) / 2; _var_7 += 1) {
for (_var_6 = 0; _var_6 <= -1 + (_var_2 + -1 * 2 + 1) / 2; _var_6 += 1) {

fineGrid.elem(_var_6 * 2 + 2,2 + -1 * 1 + _var_7 * 2)
= (coarseGrid.elem(_var_6 * 1 + 1,1 + -1 * 1 + _var_7 * 1)
+ coarseGrid.elem(_var_6 * 1 + 1,_var_7 * 1 + 1)) / 2.0;

}
}
for (_var_9 = 0; _var_9 <= -1 + (_var_3 + -1 * 2 + 1) / 2; _var_9 += 1) {
for (_var_8 = 0; _var_8 <= -1 + (_var_2 + -1 * 2 + 1) / 2; _var_8 += 1) {

fineGrid.elem(2 + -1 * 1 + _var_8 * 2,2 + -1 * 1 + _var_9 * 2)
= (coarseGrid.elem(1 + -1 * 1 + _var_8 * 1,1 + -1 * 1 + _var_9 * 1)
+ coarseGrid.elem(1 + -1 * 1 + _var_8 * 1,_var_9 * 1 + 1)
+ coarseGrid.elem(_var_8 * 1 + 1,1 + -1 * 1 + _var_9 * 1)
+ coarseGrid.elem(_var_8 * 1 + 1,_var_9 * 1 + 1)) / 4.0;

}
}

}

Fig. 7. Example: Function interpolate2D with translated array operations only

68 D. Quinlan et al.

void interpolate2D(class floatArray &fineGrid,class floatArray &coarseGrid)
{

int coarseGrid_length_2 = (coarseGrid.Array_Descriptor.Array_Domain.getLength(1));
int coarseGrid_length_1 = (coarseGrid.Array_Descriptor.Array_Domain.getLength(0));
int coarseGrid_stride_2 = (coarseGrid.Array_Descriptor.Array_Domain.Stride[1]);
int coarseGrid_stride_1 = (coarseGrid.Array_Descriptor.Array_Domain.Stride[0]);
int coarseGrid_size_2 = (coarseGrid.Array_Descriptor.Array_Domain.Size[1]);
int coarseGrid_size_1 = (coarseGrid.Array_Descriptor.Array_Domain.Size[0]);
float *coarseGrid_pointer = (coarseGrid.getDataPointer());
int fineGrid_length_2 = (fineGrid.Array_Descriptor.Array_Domain.getLength(1));
int fineGrid_length_1 = (fineGrid.Array_Descriptor.Array_Domain.getLength(0));
int fineGrid_stride_2 = (fineGrid.Array_Descriptor.Array_Domain.Stride[1]);
int fineGrid_stride_1 = (fineGrid.Array_Descriptor.Array_Domain.Stride[0]);
int fineGrid_size_2 = (fineGrid.Array_Descriptor.Array_Domain.Size[1]);
int fineGrid_size_1 = (fineGrid.Array_Descriptor.Array_Domain.Size[0]);
float *fineGrid_pointer = (fineGrid.getDataPointer());
int _var_9; int _var_8; int _var_7; int _var_6; int _var_5;
int _var_4; int _var_3; int _var_2; int _var_1; int _var_0;
int fineGridSizeX = (fineGrid_length_1);
int fineGridSizeY = (fineGrid_length_2);
int coarseGridSizeX = (coarseGrid_length_1);
int coarseGridSizeY = (coarseGrid_length_2);

// Interior fine grid points
class Range If(2,_var_2 = fineGridSizeX - 2,2);
class Range Jf(2,_var_3 = fineGridSizeY - 2,2);
class Range Ic(1,coarseGridSizeX,1);
class Range Jc(1,coarseGridSizeY - 1,1);

for (_var_1 = 0; _var_1 <= -1 + (_var_3 + -1) / 2; _var_1 += 1) {
for (_var_0 = 0; _var_0 <= -1 + (_var_2 + -1) / 2; _var_0 += 1) {

fineGrid_pointer[_var_0 * 2 + 2 + (_var_1 * 2 + 2)
* fineGrid_stride_1 * fineGrid_size_1]

= coarseGrid_pointer[_var_0 * 1 + 1 + (_var_1 * 1 + 1)
* coarseGrid_stride_1 * coarseGrid_size_1];

fineGrid_pointer[2 + -1 * 1 + _var_0 * 2 + (_var_1 * 2 + 2)
* fineGrid_stride_1 * fineGrid_size_1]

= (coarseGrid_pointer[1 + -1 * 1 + _var_0 * 1 + (_var_1 * 1 + 1)
* coarseGrid_stride_1 * coarseGrid_size_1]

+ coarseGrid_pointer[_var_0 * 1 + 1 + (_var_1 * 1 + 1)
* coarseGrid_stride_1 * coarseGrid_size_1]) / 2.0;

fineGrid_pointer[_var_0 * 2 + 2 + (2 + -1 * 1 + _var_1 * 2)
* fineGrid_stride_1 * fineGrid_size_1]

= (coarseGrid_pointer[_var_0 * 1 + 1 + (1 + -1 * 1 + _var_1 * 1)
* coarseGrid_stride_1 * coarseGrid_size_1]

+ coarseGrid_pointer[_var_0 * 1 + 1 + (_var_1 * 1 + 1)
* coarseGrid_stride_1 * coarseGrid_size_1]) / 2.0;

fineGrid_pointer[2 + -1 * 1 + _var_0 * 2 + (2 + -1 * 1 + _var_1 * 2)
* fineGrid_stride_1 * fineGrid_size_1]

= (coarseGrid_pointer[1 + -1 * 1 + _var_0 * 1 + (1 + -1 * 1 + _var_1 * 1)
* coarseGrid_stride_1 * coarseGrid_size_1]

+ coarseGrid_pointer[1 + -1 * 1 + _var_0 * 1 + (_var_1 * 1 + 1)
* coarseGrid_stride_1 * coarseGrid_size_1]

+ coarseGrid_pointer[_var_0 * 1 + 1 + (1 + -1 * 1 + _var_1 * 1)
* coarseGrid_stride_1 * coarseGrid_size_1]

+ coarseGrid_pointer[_var_0 * 1 + 1 + (_var_1 * 1 + 1)
* coarseGrid_stride_1 * coarseGrid_size_1]) / 4.0;

}
}

}

Fig. 8. Example: optimized function interpolate2d (translating array operations + loop
fusion)

Classification and Utilization of Abstractions for Optimization 69

have been applied only to expressions composed of built-in types. We enable the
optimization of statements and expressions of high-level user-defined abstrac-
tions. Additional annotations are used to specify the semantics of user-defined
types which are not determined by the existing program analysis. The additional
semantics are utilized in optimizing user-defined abstractions.

As an example, we have implemented an adapted constant-propagation/folding
algorithm to automatically infer the symbolic properties of arbitrary user-defined
objects. In Figure 5, two annotations, has-value and restrict-value, are used to
describe the properties. Specifically, has-value declares that class floatArray has
two properties: the array dimension and the length of each dimension i, and that
class Range has three properties, base, len and stride, for selecting subsets of ele-
ments from arrays. Similarly, the annotation restrict-value declares how properties
of user-defined types can be implied from function calls. For example, if “floatAr-
ray::operator()(int index)” is used to access the element of an floatArray object
arr, we know that arr must have a single dimension, and it will remain single-
dimensional until some other operator modifies its shape. We have also combined
the symbolic property analysiswith loop optimizations to automatically determine
the shapes of user-defined abstractions [8].

Using these annotations as additional semantic information we can translate
high-level array operations to a sequence of loops and perform loop fusion. For
example, in Fig. 6 we show the high-level code of a 2D interpolation. The essen-
tial information from annotations is the element-wise modification of the array
(modify annotation). The translated source code is shown in Fig. 7. Addition-
ally, we applied loop fusion to this version and obtained an even more efficient
version of the program, shown in Fig. 8. Both optimization steps use information
from the annotations. In the next section we discuss the performance of these
optimized versions and other benchmarks.

5 Experimental Results

This section presents some preliminary results from applying loop optimizations
to several kernels written using the A++/P++ Library [1], an array class library
that supports both serial and parallel array abstractions with a single interface.
We selected our kernels from the Multigrid algorithm for solving elliptic partial
differential equations. The Multigrid algorithm consists of three phases: relax-
ation, restriction, and interpolation, from which we selected both interpolation
and relaxation on one, two, and three dimensional problems.

Our experiments aim to validate two conclusions: our approach can signifi-
cantly improve the performance of numerical applications, and our approach is
general enough for optimizing a large class of applications using object-oriented
abstractions. The kernels we used, though small, use a real-world array abstrac-
tion library and are representative of a much broader class of numerical compu-
tations expressed using sequences of array operations. All six kernels (one, two
and three-dimensional interpolation and relaxation) benefited significantly from
our optimizations.

70 D. Quinlan et al.

Table 1. Performance results (orig: elapsed time of original versions written using
array abstractions — different numbers of iterations were run for different problem
sizes; translate-only: speedups from translating array abstractions into low-level C im-
plementations; translate+fusion: speedups from both array translation and loop fusion;
fusion-only: speedups from applying loop fusion alone.)

(a) Interpolation results
Interp1D Interp2D Interp3D

array orig transla translate fusion orig transla translate fusion orig transla translate fusion
size (sec) te only + fusion only (sec) te only + fusion only (sec) te only + fusion only
50 4.833 1.915 2.131 1.113 7.000 3.034 3.932 1.296 9.166 2.497 3.184 1.275
75 5.000 4.142 4.519 1.091 7.000 2.766 3.131 1.132 9.333 3.021 3.813 1.262
100 5.333 2.593 2.899 1.118 7.000 2.753 3.247 1.179 9.333 2.929 3.767 1.286
125 7.666 2.853 4.228 1.482 9.833 3.304 3.882 1.175 10.666 3.214 4.442 1.382
150 9.166 2.390 4.214 1.763 11.166 2.897 4.542 1.568 12.333 2.871 4.189 1.459
175 11.366 2.630 4.618 1.756 12.833 2.893 4.964 1.716 15.766 3.403 5.264 1.547
200 11.000 2.419 4.289 1.773 14.799 3.161 5.348 1.692 13.799 2.514 4.211 1.675

(b) Red-black relaxation results
RedBlack1D RedBlack2D RedBlack3D

array orig transla translate fusion orig transla translate fusion orig transla translate fusion
size (sec) te only + fusion only (sec) te only + fusion only (sec) te only + fusion only
50 11.500 2.178 5.338 2.451 17.166 1.650 3.344 2.026 22.499 3.260 3.445 1.057
75 14.999 1.728 6.692 3.872 16.666 1.627 3.280 2.016 27.332 3.938 3.776 0.959
100 26.166 3.540 11.852 3.348 32.165 2.672 5.146 1.926 35.665 4.744 4.176 0.880
125 32.499 1.960 12.327 6.289 41.498 2.418 4.421 1.828 45.998 4.685 3.895 0.831
150 35.165 2.865 13.885 4.847 46.665 2.134 4.643 2.176 53.498 5.272 4.440 0.842
175 38.132 2.344 15.270 6.513 52.065 2.514 5.378 2.140 64.531 6.238 5.701 0.914
200 38.598 3.125 15.117 4.838 53.398 2.501 6.117 2.446 67.797 6.703 5.384 0.803

We generated three versions for each kernel: the original version (orig) us-
ing array abstractions, the translate-only version auto-optimized by translating
array operations into low level C implementations, and the translate+fusion ver-
sion auto-optimized both with array translation and loop fusion. For the two-
dimensional interpolation code Fig. 6 shows the original, Fig. 7 the translate-only
version, and Fig. 8 the translate+fusion version.

The original versions of all kernels each have 20-60 lines of code, (they look
simple because they are written using array abstractions). After translating array
operations into explicit loops, each kernel contains 2-8 loop nests which are then
considered for loop optimization. Each loop nest has 1-3 dimensions, depending
on the dimensionality of the arrays being modified.

We measured all versions on a CompaqAlphaServerDS20E.Eachnode has 4GB
memory and two 667MHz processors. Each processor has L1 instruction and data
caches of 64KB each, and 8MB L2 cache. We used the Compaq vendor C++ com-
piler with the highest level of optimization, and measured the elapsed-time of each
execution. Table 1 present our measurements using multiple array sizes.

From Table 1(a), in nearly all cases the translation of the array abstractions
results in significant improvements. But applying loop fusion improves the per-
formance further by 20%-75%. This validates our belief that loop optimization
is a significant step further toward fully recovering the performance penalty of
using high-level array abstractions.

Classification and Utilization of Abstractions for Optimization 71

From Table 1(b), the dominant performance improvements come from trans-
lating array abstractions into low-level implementations(translate-only). Loop fu-
sion can further improve performance by 2.3-6.5 times for one and two-dimensional
relaxation kernels, but for three-dimensional relaxation, it showed only slight im-
provement (5%) for small arrays(50) and degraded performance (up to 20%) for
large arrays. Here the performance degradation is due to increased register pres-
sures from the much larger fused loop bodies in the three-dimensional case. We are
working on better algorithms to selectively apply loop fusion.

The final codes generated by our optimizer are very similar to the corre-
sponding C programs that programmers would manually write. Consequently,
we believe that their performance would also be similar. Further, because pro-
grammers usually don’t go out-of-the-way in applying loop optimizations, our
techniques can sometimes perform better than hand-written code. This is espe-
cially true for the red-black relaxation kernels, where the original loops need to
be re-aligned before fusion and a later loop-splitting step is necessary to remove
conditionals inside the fused loop nests. Such complex transformations are much
more easily applied automatically by compilers than manually by programmers.

6 Related Work

Related work on the optimization of libraries in telescoping languages [9] shares
similar goals as our research. The SUIF compiler [10] and OpenC++ [11] each
provided a programmable level of control over the compilation of applications
in support of optimizing user-defined abstractions. The Broadway compiler [12]
uses general annotation languages to guide source code optimizations. Within
ROSE, we provide both an open compiler infrastructure for programmers to
define their own optimizations and a collection of annotation mechanisms for
programmers to exploit predefined traditional compiler optimizations. Template
Meta-Programming[13,14] has also been used to optimize user-defined abstrac-
tions, but is effective only when optimizations are isolated within a single state-
ment. Optimizations across statements, such as loop fusion, is beyond the capa-
bilities of template meta-programming.

A rich set of compiler optimization techniques have been developed to improve
the performance of applications, including a collection of loop transformations.
These transformations by default can only optimize operations on primitive types,
whose semantics are known by the compilers. To extend these optimizations to
user-defined abstractions,Wu, Midkiff, Moreira and Gupta [15] proposed semantic
inlining, which treats specific user-defined types as primitive types in Java.Artigas,
Gupta, Midkiff and Moreira [16] devised an alias versioning transformation that
creates alias-free regions in Java programs so that loop optimizations can be ap-
plied to Javaprimitive arrays and the arrayabstractions from their library.Wu and
Padua [17] investigated automatically parallelization of loops operating on user-
defined containers, but assumed that their compiler knewabout the semantics of all
operators. All the above approaches apply compiler techniques to optimize library
abstractions. However, by encoding the knowledge within their compilers, these

72 D. Quinlan et al.

specialized compilers cannot be used to optimize abstractions in general other than
those in their libraries. In contrast, we target optimizing general user-defined ab-
stractions by allowing programmers to classify their abstractions and to explicitly
communicate semantics information with the compiler.

7 Conclusions

User-defined abstractions are productive in the development of application codes,
but the abstraction penalty is often not acceptable for scientific computing. We
have presented an approach that reduces this penalty such that the performance
of user-defined abstractions becomes acceptable for high-performance comput-
ing, allowing to use these abstractions to achieve higher productivity in the
development of scientific applications.

We have demonstrated that leveraging semantics of user-defined abstractions
can provide significant opportunities for our optimizations and identified an an-
notation approach to specify relevant user-defined semantics. Using these an-
notations, we built an automated transformation approach greatly simplifying
the otherwise explicit specification of program transformations using more tra-
ditional approaches (such as the other mechanisms in ROSE).

We expect that additional research work on the classification of general ab-
stractions will lead to a more useful and practical optimization approach tailored
to the domain specific optimization opportunities of user-defined abstractions.
The success of such an approach depends upon other research areas, including
the verification of transformations, verification of annotations, and the semantic
classification of general user-defined abstractions.

References

1. R. Parsons and D. Quinlan. A++/P++ array classes for architecture independent
finite difference computations. In Proceedings of the Second Annual Object-Oriented
Numerics Conference, April 1994.

2. Daniel Quinlan, Markus Schordan, Brian Miller, and Markus Kowarschik. Parallel
object-oriented framework optimization. Concurrency and Computation: Practice
and Experience, 16, Issue 2-3:293–302, February 2004.

3. Markus Schordan and Daniel Quinlan. A source-to-source architecture for user-
defined optimizations. In JMLC’03: Joint Modular Languages Conference, volume
2789 of Lecture Notes in Computer Science, pages 214–223. Springer Verlag, August
2003.

4. Edison Design Group. http://www.edg.com.
5. Francois Bodin, Peter Beckman, Dennis Gannon, Jacob Gotwals, Srinivas

Narayana, Suresh Srinivas, and Beata Winnicka. Sage++: An object-oriented
toolkit and class library for building fortran and C++ restructuring tools. In
Proceedings. OONSKI ’94, Oregon, 1994.

6. Hanspeter Moessenboeck. Coco/R - A generator for production quality compilers.
In LNCS477, Springer, 1991.

7. Christopher W. Fraser, Robert R. Henry, and Todd A. Proebsting. BURG: fast
optimal instruction selection and tree parsing. ACM SIGPLAN Notices, 27(4):68–
76, April 1992.

Classification and Utilization of Abstractions for Optimization 73

8. Qing Yi and Dan Quinlan. Applying loop optimizations to object-oriented abstrac-
tions through general classification of array semantics. In The 17th International
Workshop on Languages and Compilers for Parallel Computing, West Lafayette,
Indiana, USA, Sep 2004.

9. Ken Kennedy, Bradley Broom, Keith Cooper, Jack Dongarra, Rob Fowler, Dennis
Gannon, Lennart Johnsson, John Mellor-Crummey, and Linda Torczon. Telescop-
ing languages: A strategy for automatic generation of scientific problem-solving
systems from annotated libraries. Journal of Parallel and Distributed Computing,
61(12):1803–1826, December 2001.

10. M. S. Lam S. P. Amarasinghe, J. M. Anderson and C. W. Tseng. The suif compiler
for scalable parallel machines. In in Proceedings of the Seventh SIAM Conference
on Parallel Processing for Scientific Computing, Feb 1995.

11. Shigeru Chiba. Macro processing in object-oriented languages. In TOOLS Pacific
’98, Technology of Object-Oriented Languages and Systems, 1998.

12. Samuel Z. Guyer and Calvin Lin. An annotation language for optimizing software
libraries. ACM SIGPLAN Notices, 35(1):39–52, January 2000.

13. Todd Veldhuizen. Expression templates. In S.B. Lippmann, editor, C++ Gems.
Prentice-Hall, 1996.

14. Federico Bassetti, Kei Davis, and Dan Quinlan. A comparison of performance-
enhancing strategies for parallel numerical object-oriented frameworks. In Ishikawa
et al., editor, International Scientific Computing in Object-Oriented Parallel Envi-
ronments, ISCOPE 97, volume 1343 of LNCS. Springer, 1997.

15. Peng Wu, Samuel P. Midkiff, Jose E. Moreira, and Manish Gupta. Improving
Java performance through semantic inlining. In Proceedings of the Ninth SIAM
Conference on Parallel Processing for Scientific Computing, Mar 1999.

16. Pedro V. Artigas, Manish Gupta, Samuel Midkiff, and Jose Moreira. Automatic
loop transformations and parallelization for Java. In Proceedings of the 2000 In-
ternational Conference on Supercomputing, May 2000.

17. Peng Wu and David Padua. Containers on the parallelization of general-purpose
Java programs. In Proceedings of International Conference on Parallel Architec-
tures and Compilation Techniques, Oct 1999.

On the Correctness of Transformations in

Compiler Back-Ends

Wolf Zimmermann

Institut f r Informatik, Martin-Luther-Universit t Halle-Wittenberg
06099 Halle/Saale, Germany

zimmer@informatik.uni-halle.de

Abstract. This paper summarizes the results on the correctness of the
transformations in compiler back-ends achieved in the DFG-project Ver-
ifix. Compiler back-ends transform intermediate languages into code of
the target machine. Back-end generators allow to generate compiler back-
ends from a set of transformation rules. This paper focuses on the cor-
rectness of these transformation rules and on the correctness of the whole
transformation stemming from the transformation rules.

1 Introduction

Verification of software systems is often done on the level of the source language.
However, it is the binary code generated by a compiler that is really executed.
Thus, unless the compiler guarantees the correctness of its compilation, a ver-
ification of the source code doesn’t say anything about the correctness of the
binary code. In order to avoid bugs at the binary level, either the binary code
has to be verified directly or source code has to be verified and compiled into bi-
nary code by a correct compiler. Compiler bugs are more frequent than expected
(see e.g. the Borland Pascal compiler Bug List and the Java Bug Database).

The aim of the DFG-project1 Verifix was to develop approaches for the con-
struction of verifying compilers. These guarantee that if a target program τ is
generated from a source program σ, then τ is a correct translation of σ. The
approaches should work for realistic source languages, as e.g. defined by ISO-
standards, and realistic target languages as defined e.g. by assembly languages
of industrial processors. Apart from these goals, a verifying compiler should gen-
erate code that is as good in the sense of time and space as it could be generated
by a non-verifying compiler. Verifix achieved these goals by using the classi-
cal compiler architecture which is well-established since more than 25 years. In
particular, this decision implies that there are no restrictions on the choice of
source and target languages. Although not considered as a part of the project,
verification shouldn’t restrict the use of optimizing transformations.

This paper focuses on the correctness of the transformations in the code gen-
eration phase, i.e. how to verify the transformation from intermediate code to
binary code. [24,21] show how this part is embedded into a whole verifying

1 Verifix was supported by DFG grants Go 323/3-3, He 2411/2-3, La 426/15-3.

T. Margaria and B. Steffen (Eds.): ISoLA 2004, LNCS 4313, pp. 74–95, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

ü äa

On the Correctness of Transformations in Compiler Back-Ends 75

compiler. We consider classical basic-block oriented intermediate languages and
sequential register based target machines. This also includes pipelined and super-
scalar processors where scheduling is done by hardware. However, we do not
consider optimizations on this level. The requirements are the same as used
by back-end generators such as BEG [14,13]. They generate compiler back-ends
from transformation rules specified as a special class of term-rewrite rules. Code-
generation consists of two phases: code selection and assembly. Code selection
replaces all instructions except jumps in the basic blocks by machine instructions
(in their binary format). Assembly linearizes the basic block graphs and thereby
generates jump instructions (again in binary format). Tools such as BEG specify
code selection. We finally assume that the formal operational semantics of the in-
termediate language and the target language is given as Abstract State Machines.
The contribution of Verifix is that from a practical viewpoint there are just two
cases to consider (transformation of side-effect free expressions and instructions
with side-effects) and for each of these cases there is a simple mechanizable proof
strategy to prove the correctness of the corresponding transformation rule.

The paper is organized as follows: Section 2 introduces Abstract State Machines
as required for this paper. Section 3 sketches code selection by term-rewrite sys-
tems. Section 4 introduces the notion of correctness and applies it to the correct-
ness of transformation specified by term-rewrite systems. Section 5 discusses the
two proof strategies and argues why these two are sufficient. Section 6 introduces
the task of assembly, the transformations, and the approach for correctness proofs.
Section 7 discusses related work and Section 8 presents our conclusions.

2 Abstract State Machines and Language Semantics

We first define the notion of Abstract State Machines. For more details, we
refer to the Lipari-Guide [25] and the ASM 1997 Guide [26]. An Abstract State
Machine (ASM) is a tuple (Σ, ΦInit,Trans) where Σ is a signature, ΦInit is a
set of Σ-formulas (the initial conditions), and Trans is a finite set of transition
rules. The set of states is the set Alg(Σ) of Σ-algebras. Σ-terms are defined as
usual. A state q is initial iff q is a model of ΦInit in the sense of logic, denoted
as q |= ΦInit. In this article, we use order-sorted partial Σ-algebras.

Notation: Sorts are denoted by capital letters, function symbols always start
with a lower-case letter. S1 < S2 denotes that S1 is a sub-sort of S2. The symbol
f : T1×. . .×Tn → T denotes a function symbol representing a total function and
f : T1 × . . .×Tn →?T denotes a function symbol representing a partial function.
[[·]]q denotes the interpretation function of symbols of Σ in Σ-algebra q. This
notion is extended as usual to Σ-terms. t ∈ S is satisfied iff t is a term of sort S.
t[x/t′] denotes the term t where each occurrence of variable x is substituted by
term t′. This can be extended as usual to Σ-formulas (here, only free variables
are substituted) and to transitions.

Transition rules are specified as in [26]. In this paper, we use the following
kinds of transition rules: if ϕ then Transitions endif

if ϕ then Transitions1 else Transitions2 endif

76 W. Zimmermann

Table 1. Typical Instructions of an Intermediate Language

:=I : EXPR × EXPR → ASSIGN integer assignment
:=A: EXPR × EXPR → ASSIGN address assignment
goto: LABEL → JUMP unconditional jump
+I : EXPR × EXPR → EXPR integer addition
+A: EXPR × EXPR → EXPR address addition
ldI : EXPR → EXPR read integer from memory
ldA: EXPR → EXPR read address from memory
intck: → EXPR k-bit integer constant
addrck: → EXPR k-bit address constant

VALUEmem:ADDR →

sp:ADDRbase:ADDR hp:ADDR

l:

ip:LABEL×NN

instr

k

n

instr

instr0

Fig. 1. State Space of an Example Intermediate Language

where ϕ is formula of many-sorted first order predicate logic and Transitions is
a set of transitions of one of the above forms or an update f(t1, . . . , tn) := t.
Such an update changes the interpretation of f : if the state transition from state
q to state q′ executes an update f(t1, . . . , tn) := t then

[[f]]q′(a1, . . . , an) =

{
[[t]]q if a1 = [[t1]]q, . . . , an = [[tn]]q
[[f]]q(a1, . . . , an) otherwise

The first kind of transition rule executes the transition rules of Transitions in
a state q iff q |= ϕ. Similarly, the second kind of transition rule executes the
transition rules of Transitions1 in a state q iff q |= ϕ. Otherwise, the transition
rules of Transitions2 are executed in a state q. Macros can be used to abbreviate
updates and terms. It is just a parameterized textual substitution mechanism.
A macro definition has the form macro(par 1, . . . , park) � text. If in an ASM-
specification a term macro(arg1, . . . , argk) is used, then it is textually replaced
by text [par 1/arg1, . . . , park/argk]. A function is dynamic iff its interpretation
may change, otherwise a function is called static. Note that a function may be
dynamic because of explicit updates in transition rules or its definition depends
on dynamic functions.

Abstract State Machines can be viewed as state transition systems. A state
transition system is a triple (Q, I,→) where Q is the (possibly infinite) set of
states, I ⊆ Q is the set of initial states and →⊆ Q × Q is the state transition

On the Correctness of Transformations in Compiler Back-Ends 77

relation. For an ASM (Σ, Φinit ,Trans), it is Q = Alg(Σ) the set of Σ-algebras,
I = {q ∈ Q : q |= Φinit} the set of Σ-algebras satisfying the initial conditions,
and Trans describes the state transition relation as above.

Example 1. The main principles for designing a dynamic semantics of program-
ming languages are: First, define the (abstract) syntax and the state space and
then define the transition rules for each class of instructions. Here, we only give a
fragment for an intermediate language based on basic blocks. A program π is a set
of procedures, a procedure p is a basic block graph, i.e., a labeled directed graph
(BB , E, lab) with a designated initial basic block i where lab : BB → LABEL,
LABEL is the sort of symbolic labels, each basic block bb ∈ BB is a finite se-
quence of instructions containing no jump-instruction except possibly the last
instruction, and there is an edge (bb1, bb2) ∈ E iff the jump instruction of bb1

has the jump target lab(bb2). For simplicity, we assume that each basic block in
a program has a unique label. Note that this implies that the inverse function
lab−1 : LABEL → BB is well-defined. Table 1 shows the signature of some typi-
cal instructions. Each instruction is a term over this signature and can therefore
be viewed as a tree.

The state space (see Fig. 1) consists of the memory mem of the target machine,
ADDR and VALUE are the sort of addresses and the sort of values that can be
stored in the memory, a stack pointer sp, a base address base, a heap pointer
hp, and an instruction pointer ip. ip = (l, k) means that the instruction to be
executed next is the k-th instruction of the basic block bb with label l. Note that
memory mapping is often part of the intermediate code generation. In particular
the execution environment is already mapped into memory.

Fig. 2 shows the definitions of expression evaluation, the ASM state transition
rules for integer assignment, and the state transition rules for jumps. Note that
eval is a dynamic function. The function SExtk(x) is a signed extension of the
k-bit sequence x to a 64-bit integer or a 64-bit relative address2. The function
instr computes the instruction corresponding to an instruction pointer. The
macro ip is T defines the class of instruction, the macro Proceed advances the
instruction pointer if it has not yet reached the end of a basic block (k-tuples
are denoted as (t1, . . . , tk) and the projection to the i-th element of a tuple
t is denoted by t ↓i), the functions lhs , rhs : LABEL × N →?EXPR compute
the left and right hand sides of an assignment, respectively, and the function
target : LABEL × N →?LABEL computes the jump target.

The next example contains some state transition rules from the DEC-Alpha
machine language specification, for a complete specification see [16].

Example 2. All necessary information for the formal semantics of machine lan-
guages is provided by the processor manual. Usually, the dynamic semantics is
given by register transfers which already are very close to updates of ASMs. The
semantics can immediately be provided for the binary format of instructions
2 Here, we use the DEC-Alpha as target machine which has 64-bit integer and ad-

dress arithmetic. If a 32-bit machine is used then the definition of the intermediate
language has to be changed accordingly.

78 W. Zimmermann

eval : EXPR → VALUE
eval(intck) = SExtk(c)

eval(addr ck) = base ⊕A SExtk(c)
eval(ldI(x)) = mem(eval(x))
eval(ldA(x)) = mem(eval(x))
eval(x +I y) = eval(x) ⊕I eval(y)
eval(x +A y) = eval(x) ⊕A eval(y)
⊕I , ⊕A is integer/address
addition on the target machine
instr((l, k)) = lab−1(l)k

if ip is ASSIGN then
mem(eval(lhs(ip))) := eval(rhs(ip))
Proceed

endif
if ip is JMP then

ip := (target(ip), 0)
endif

Macros:
ip is T � instr(ip) ∈ T
Proceed � ip := (ip ↓1, ip ↓2 +1)

Fig. 2. Expression Evaluation and State Transitions

using adequate access functions, cf. Fig. 3. They use sorts of bit sequences of
a certain length: QUAD , LONG, WORD , TFCODE , BYTE , OPCODE , and
RADDR denote the sorts of 64-bit sequences (quad integers and addresses), 32-
bit sequences (long integers), 16-bit sequences (words), 11-bit sequences (type
and function code3), 8-bit sequences (bytes), 6-bit sequences (operation codes),
and 5-bit sequences (register addresses), respectively. Bit sequences may denoted
in hexadecimal, decimal, binary notation (as in C), or explicitly as lists (denoted
by [x1, . . . , xn]). The state space of the DEC-Alpha is also shown in Fig. 3. The
function reg represents the 32 integer registers. The 32 floating point registers
freg are just added for completeness but are not important for this paper. Note
that the memory memα is byte-oriented and addressed by quads. The macros for
mem define how to read and write quads into the byte oriented memory memα.
Here, li denotes the i-th element of a list l (l0 is the first element), splitn(l)
splits a list l into a list of lists of length n (the last list may contain less than
n elements), and concat(l) concatenates all lists in a list l of lists. Note that
li is defined iff i is less than the length of l. The macros for reading and writ-
ing the byte-oriented memory specify therefore how to map the memory mem
of the intermediate language to the memory memα of the target languages. It
only requires an identification of sorts and operations of the static part of the
intermediate language specification with those used by the machine language
specification. E.g. the sorts INT and ADDR of the intermediate language are
both identified with QUAD . The operations ⊕I and ⊕A used in the specifica-
tion for the intermediate language are for the purpose of the paper additions
on integers and addresses. They are both mapped to ⊕Q-operation on quads.
Furthermore, the program is in the memory. Therefore, the program counter pc
contains the address of the next instruction to be executed.

Fig. 4 shows some state transitions of the DEC-Alpha Machine. The macros
rb and rc are defined analogously as ra using functions regb and regc accessing
the other registers encoded in an arithmetic instruction. The second instruction
shows an addition where the second operand is a 16-bit constant directly encoded
in the instruction. LDQ loads a register ra using address register rb and relative
address disp. LDA works similarly but does not access the memory and loads the
content of rb plus the constant disp. The constant may be shifted to the higher

3 In particular, this might also indicate whether the second operand is a constant
directly encoded in the instruction.

On the Correctness of Transformations in Compiler Back-Ends 79

State Space Macros
reg : RADDR → QUAD
freg : RADDR → QUAD
memα : QUAD → BYTE
pc : QUAD
Auxiliary Functions:
opcode : LONG → OPCODE opcode
rega : LONG →?RADDR register a
type : LONG →?TFCODE operation type
immed : LONG →?WORD constant operand
disp : LONG →?WORD const. rel. address
imbyte : LONG →?BYTE byte in ZAP-instr.

mem(a) � concat([memα(a), . . . ,memα(a ⊕Q 7)])
instrα(a) � concat([memα(a), . . . , memα(a ⊕Q 4)])
mem(a) := q � memα(a) := split8(q)0

...
memα(a ⊕Q 7) := split8(q)7

pc is ADD �
opcode(instr(pc)) = 010000

pc is ADDQ � pc is ADD∧
type(instr(pc)) = 0x020

Proceed � pc := pc ⊕Q 4
ra � rega(instr(pc))

Fig. 3. State Space of the DEC-Alpha Processor Family and Some Macros

if pc is ADDQ then
reg(rc) := reg(ra) ⊕Q reg(rb)
Proceed

endif
if pc is ADDI then

reg(rc) := reg(ra) ⊕Q SExt16(immed(pc))
Proceed

endif
if pc is LDQ then

reg(ra) := mem(reg(rb) ⊕ SExt16(disp))
Proceed

endif
if pc is LDA then

reg(ra) := reg(rb) ⊕ SExt16(disp)
Proceed

endif
if pc is LDAH then

reg(ra) := reg(rb) ⊕ LogShift(SExt16(disp), 16))
Proceed

endif

if pc is STQ then
mem(reg(rb) ⊕ SExt16(disp)) := reg(ra)
Proceed

endif
if pc is ZAP then

reg(rc) := zerobytes(reg(ra), imbyte(pc))
Proceed

endif
if pc is SLL then

reg(rc) := LogShift(reg(ra), immed(pc)〈58 : 63〉)
Proceed

endif
if pc is BR then

reg(ra) := pc ⊕ 4
pc := pc ⊕Q 4 ⊕Q LogShift(SExt21(disp, 2))

endif
if pc is JMP then

reg(ra) := pc ⊕ 4
pc := reg(rb) ∧Q #fffffffc

endif

Fig. 4. Some State Transition Rules for the DEC-Alpha

16 bits. STQ is the instruction dual to LDQ and stores ra. The ZAP instruction
explicitly sets some bytes in a quad word to zero. This is modeled by the function
zerobytes : QUAD ×BYTE → QUAD . The i-th byte in zerobyte(q, b) is the zero
byte iff the i-bit of b is 1, otherwise it is equal to i-th byte of q. The need of
this instruction will become clear later (cf. Section 5). The SLL-instruction is the
logical left shift. The last 6 bits of the register rb determine the number of bits to
be shifted4. The jump instruction BR is a relative jump. Its operand is a 21-bit
relative jump address directly encoded in the instruction. Since the alignment of
instructions, it is multiplied by 4. The address of the instruction after the jump
instruction is stored in register ra. The JMP instruction also stores in register
ra this address. However, the jump target is contained as absolute address in
register rb. Due to alignment restrictions, the last two bits are set explicitly to
0 using the bitwise conjunction ∧Q for quadwords.

Note that these formulations can be extended in straightforward way to the
semantics processor pipelines and instruction-level parallelism.
4 l〈n : m〉 denotes the sublist [ln, . . . , lm] of list l.

80 W. Zimmermann

X :=I Y → • {STQ Y, (0)X} Rule 1
X :=A Y → • {STQ Y, (0)X} Rule 2

addrc16 :=I Y → • {STQ Y, (c16)R30} Rule 3
addrc16 :=A Y → • {STQ Y, (c16)R30} Rule 4

intc16 → X {LDA X, (c16)R31} Rule 5
intc32 → X {LDA X, (c32.L)R31; ZAP X, #fc, X; LDAH X, (c32.H)X} Rule 6

addrc16 → X {LDA X, (c16)R30} Rule 7
addrc32 → X {LDA X, (c32.L)R31; ZAP X, #fc, X; LDAH X, (c32.H)X; ADDQ X, R30, X} Rule 8
ldI(Y) → X {LDQ X, (0)Y } Rule 9
ldA(Y) → X {LDQ X, (0)Y } Rule 10

ldI(c16) → X {LDQ X, (c16)R31} Rule 11
ldA(c16) → X {LDQ X, (c16)R31} Rule 12
X +I Y → Z {ADDQ X, Y, Z} Rule 13
X +A Y → Z {ADDQ X, Y, Z} Rule 14

X +I intc16 → Z {ADDI X, #c16, Z} Rule 15
X +A addrc16 → Z {ADDI X, #c16, Z} Rule 16

Fig. 5. Some Transformation Rules for Code Selection as Term Rewrite Rules

3 Generation of Compiler-Back Ends

Generating binary code from intermediate languages works in two phases: First,
the code selection replaces the instruction sequence of each basic block by a ma-
chine language instruction sequence (except jumps). Second, the assembly phase
linearizes the basic blocks and replaces jump instructions, if needed at all. We focus
here on the code selection. The assembly phase is discussed in Section 6. The basic
idea of term-rewriting in code selection is to apply term-rewrite rules of the form
t → X or t → • and associate with each rule a target code sequence m1, . . . , mn

to be produced if the rule is applied. The first form of the rule is applied to expres-
sions t while the latter is applied to instructions t. The term t may contain variables
which are denoted by capital letters X, Y, . . . During application of a rule, each of
these variables is associated with a register containing the value of the expression
that is substituted for it. One may associate costs to each rule. A dynamic pro-
gramming algorithm then determines the cost-optimal rule cover. However, this is
not important for the purpose of correctness of the transformation.

Example 3. Fig. 5 shows some of the transformation rules for the code selection
phase from our intermediate language programs to DEC-Alpha machine code. We
used symbolic machine code for denoting the DEC-Alpha machine instructions.
However, if register assignment is performed during code generation, this is just an
abbreviation for the binary instruction format. c32.L and c32.H denote the lower
and higher 16 bits of c32, respectively. It should be noted that some rules are spe-
cializations of other rules, e.g. rule 3 specializes rule 1. Usually, this is reasonable if
one operand is a small constant (e.g. 16-bit constant). Special attention is required
to understand rules 6 and 8. One could easily accidently forget the ZAP instruction.
However, the LDA instruction automatically sign-extends the loaded constant (cf.
Fig. 4), i.e. if bit 15 of c32 is 1, then all leading bits are set to 1. Hence, the follow-
ing LDAH-instruction does not work properly because it expects that bits 16-63 are
all 0. This is ensured by the ZAP-instruction. Observe that such kinds of compiler
bugs are hard to identify. We found such a bug in a back-end written by one of our
students using the proof strategies discussed in Section 5.

On the Correctness of Transformations in Compiler Back-Ends 81

addr28 :=I ldI(addr28) +I int1 (11) X = R2 LDQ R2, (28)R30
addr28 :=I R2 +I int1 (15) X = R2 Z = R2 ADDIR2, #1, R2
addr28 :=I R2 (3) X = R2 STQ R2, (28)R30
•

Fig. 6. Code Generation for addr0x001c :=I ldI(addr0x001c) +I int0x0001

Rule 3

Rule 15

Rule 11

R2
1

addr 28

addr 28

:=I

+I

ldI

R2

int

Fig. 7. Rule Cover corresponding to the Term-Rewrite of Fig 6

We show now how to apply the above rules to generate code. For each rule
application a register has to be assigned to the RHS of a term-rewrite rule if it
is a variable. Some of the registers are forbidden. In the DEC-Alpha processor
family register R31 always contains 0 and cannot be written. According to con-
ventions of the DEC-Alpha processor family the base address base is stored in
register R30. Hence this register is also not assigned. Suppose we want to gen-
erate code for the instruction addr 0x001c :=I ldI(addr 0x001c) +I int0x0001. Fig. 6
shows a possible term-rewrite. The first column contains the actual term to be
rewritten, the second column contains the rule that is applied, the third column
shows the matching substitutions for the LHS of the rule, the fourth column
shows a register assignment, and the last column shows the corresponding code
generated. Reading the last column from top to bottom yields the machine in-
struction sequence implementing the intermediate language instruction. For any
of the applied rules there are alternatives: Instead of applying rule (11) rule (7)
is also applicable for loading the address constant in a register. Then, rule (10)
has to be applied later. Similarly, rule (7) could be applied instead of rule (3).
The final rule application would then be rule (1). Instead of applying rule (15)
at the second step, one could have applied rule (5) to load the integer constant
1 to a register and then apply rule (13).

One property is that the applied rules overlap in exactly one node of the in-
struction tree, cf. Fig. 7 for the term-rewrite in Fig. 6. The values of these nodes
must be stored in registers. A generator for code selection computes for each in-
struction of the intermediate program such a rule cover, assigns registers to the
overlapping nodes (these are used during term-rewriting for assigning registers
to variables), and plans the order of rule applications. Then, the term-rewrite
is actually executed as demonstrated by Example 3. Formally the register as-
signment ra is used as a substitution of the variables in the term-rewrite rule by
registers.

82 W. Zimmermann

4 Correctness of Program Transformations

The notion of compiler or translation correctness is often defined as refinement of
programming language constructs. In particular each state transition defined by
a source language concept (e.g. a conditional statement) must be implemented
in exactly the same way by the target machine. However, this may forbid some
global or interprocedural optimizations (although for the purpose of this paper
it might be sufficient). The notion of compiler correctness took in Verifix longer
than expected. A more extensive discussion can be found in [24,21].

Observable Behaviour. From a compiler user’s viewpoint, only the input/out-
put relation of the program is of interest. Each program has such an interaction
with an environment which we call observable behaviour. In terms of ASMs the
states are projected to the I/O-relevant dynamic functions, e.g. the input/output
streams (observable states). The observable behaviour of a program consists only of
the observable states and state transitions between them induced by the more fine
semantics. It is an abstraction of the ASM semantics as state transition system and
therefore also a state transition system. Compiler users usually only require that
the target program preserves the observable behaviour of the source program.

Resource Limitations. Since usually machine resources are limited while it
is easy to write e.g. Java programs that would consume more than 10TByte
memory, the target programs may exceptionally stop because of memory over-
flow. We therefore came up with the following notion of correctness: Let τ be a
program of the target language with the observable behaviour (I, Q,→) and σ
be a program of the source language with observable behaviour (I ′, Q′,→′). τ
preserves the observable behaviour of σ up to resource limitations iff there is a
relation φ ⊆ Q × Q′ such that for any finite or infinite sequence q0 → q1 → · · ·
of τ with q0 ∈ I, q1, q2, . . . ∈ Q there is a finite or infinite sequence of states
q′0 → q′1 → · · · of σ with q′0 ∈ I ′ and qiφq′i for all i except possibly for the last
state (if the sequence of observable states of τ is finite). This means that τ halts
with violation of resource limitations. Fig. 8 visualizes this definition.

The preservation of observable behaviour up to resource limitations is transitive
and therefore can be applied stepwise for the different phases in a compiler. Itmight
be even useful for the purpose of proving correctness to introduce new intermediate
languages that are not used by a compiler. If we speak in the following about source
and target language, this may be one intermediate language (before the transfor-
mation) and the next intermediate language (after the transformation).

q

q’

n1

0 1

0

q’ q’

qq

n

φ φ

I/O I/O

I/O

I/O

I/O

φ

σ

τ
I/O I/O

I/O

Fig. 8. Preservation of Observable Behaviour

On the Correctness of Transformations in Compiler Back-Ends 83

Example 4. Consider the following language (called BBMIX) which is the union
of the intermediate language in Example 1 and of basic block graphs of DEC-
Alpha machine instructions (except jumps) which is obtained before assembling
the binaries. The notion of programs, procedures, and basic blocks is analogous to
Example 1. However, the set of instructions is the union of the set of intermediate
language instructions (see Table 1) and the set of DEC-Alpha instructions except
DEC-Alpha jump-instructions. Expressions are enriched by register access rg(i)
(abbreviated as Ri). A basic block may contain instruction sequences such as
LDQ R2, (28)R30; addr28 :=I R2 +I int1.

For the dynamic semantics, we extend expression evaluation by access to
registers, i.e. eval (Ri) = reg(i) and otherwise use all the state transition rules
from the intermediate language (cf. Fig. 2) and the DEC-Alpha (except jumps,
cf. Fig. 4) but with the Proceed -macro from the intermediate language. Note that
except the expression evaluation for registers nothing need to be added for the
definition of BBMIX. Anything else can be derived completely from the language
definition for the intermediate language and the DEC-Alpha machine language.
The intermediate language and the basic block graphs with DEC-Alpha machine
instructions are now just sub-languages from BBMIX. The transformation rules in
Fig. 4 are now program transformations within BBMIX. E.g. applying only Rule
11 to the instruction addr 28 :=I ldI(addr 28) +I int1 would yield the instruction
sequence LDQ R2, (28)R30; addr28 :=I R2 +I int1. Therefore we can identify
source and target language.

Remark 1. We were able to perform this process of language unification using
ASM-semantics under rather general conditions, see [53]. It is independent on the
concrete instruction sets of the intermediate language and the target language, it
only requires a notion of expression in the intermediate language and the notion
of registers in the target language. Note that source-to-target transformations
and local optimizing transformations can be dealt within the same way.

Correctness of Program Transformations. A program transformation is
correct iff any target program τ obtained by the program transformation from
a source program σ preserves the observable behaviour of σ up to resource lim-
itations. The correctness proof for program transformations follows the idea of
simulation proofs similar to those in complexity and computability theory. One
has to define a relation ρ between the states of programs of the target language
and states of programs of the source language that is compatible to the relation
φ on the observable behaviours of the target and source programs, respectively.
This could be the same language as demonstrated by Example 4. The first sim-
ulation in Fig. 9 shows the conditions on ρ if the observable behaviour in the
source and target program does not change (i.e. the diagrams must commute).
The second simulation shows if there is exactly one observable state transition
in the target and source program.

Local and Global Correctness. If a program transformation replaces a pro-
gram fragment ψ′ by another program fragment ψ then the state initial at ψ′

and ψ and final at ψ′ and ψ are in relation ρ, respectively. For a simulation proof

84 W. Zimmermann

Fig. 9. Simulation Proofs

cmd[ra(X)]
n−1

qn
1)ra(m

q’
0

q0 q1

q’
1

)nra(m
qn+1

ρ ρ

cmd[t]

q

(a) Rule t → X{m1, . . . , mn}
t

n−1
qn

1)ra(m

q’
0

q0 q1
)nra(m

ρ

q’
1

ρ

q

(b) Rule t → •{m1, . . . , mn}

Fig. 10. Local Correctness of Term-Rewrite Rules w.r.t register assignment ra

two properties have to be shown: First one has to show that concrete program
transformations are correct in the above sense (local correctness). Second, the
single simulations stemming from program transformations must be sequentially
composable (global correctness). We now apply these notions for code selection.
In the following we assume that the intermediate language and the target lan-
guage are united in the way as demonstrated by Example 4, for details see [53].
This has the advantage we can focus on the application of a single transfor-
mation rule. The complete simulation follows by induction on the number of
applied transformation rules. Since we focus on the application of a single trans-
formation rule, we have a mapping ψ from the addresses of the instruction in
the source program and the addresses in the target program. We can now define
the relation ρ: Let Q′ and q be the sets of states before and after the single
application of this transformation rule, respectively. Two states q ∈ Q, q ∈ Q′

are said to be corresponding iff [[f]]q = [[f]]q′ for all dynamic functions except for
ip and registers containing dead values w.r.t. q′5. The idea behind corresponding
states is that their relevant memory is isomorphic. We define qρq′ iff q and q′

are corresponding states and ψ([[ip]]q′) = [[ip]]q.
We first define local correctness. Let Q′ and Q be defined as above, and ra

be the register assignment computed during the planning phase of the code
selection. A term-rewrite rule of the form t → X{m1, . . . , mn} is locally correct
w.r.t. ra iff for all states q0, . . . , qn ∈ Q such that q′0 |= instr(ip) = cmd [t],

5 A value is dead if it is not needed as operand by instructions executed later.

On the Correctness of Transformations in Compiler Back-Ends 85

q0 → q1 → · · · → qn−1 → qn, q0 |= instr(ip) = ra(m1), . . . , qn−1 |= instr(ip) =
ra(mn), and qn |= instr(ip) = cmd [ra(X)] there is state q′0 ∈ Q′ such that q0ρq′0
and the following two conditions are satisfied:

i. [[eval (t)]]q′
0

= [[reg(ra(X))]]qn and
ii. qn and q′0 are corresponding states. Note that reg(ra(X)) must contain a

dead value in q′0.

This definition implies qn+1ρq′1 since expression evaluation in the intermediate
language is free of side-effects.

A term-rewrite rule t → •{m1, . . . , mn} is locally correct w.r.t. ra iff for all
states q0, . . . , qn ∈ Q such that q0 → q1 → · · · → qn−1 → qn where q0 |=
instr(ip) = ra(m1), . . . , qn−1 |= instr(ip) = ra(mn) there is a state q′0 such that
q0ρq′0 and the following two conditions are satisfied:

iii. qn and q′1 are corresponding states.
iv. q′0 |= instr(ip) = t and [[instr(ip)]]qn = [[instr(ip)]]q′

1
.

Thus it holds qnρq′1, cf. Fig. 10(b).
Global correctness can be proven under rather general conditions. In [53] we

have proven that the following theorem holds for any transformation from basic
block oriented intermediate languages with expressions to register machines:

Theorem 1 (Global Correctness of Simulation). Let T be a set of term-
rewrite rules specifying the transformation in a code-selection, σ be a source
program annotated with register assignment ra, a rule cover, and a schedule on
the order of applying rules, and τ be the target program obtained by executing the
program transformations according to the schedule. If each rule in T is locally
correct and for any applied rule t → X{m1, . . . , mn}, register ra(X) (the register
assigned to hold the value for t) does contain a live value, then τ preserves the
observable behaviour of σ.

The proof has two stages. First, it is by induction on the number of applied term-
rewrite rules as described above. The corresponding simulation is then shown
by induction on the number of executions of the program fragment the trans-
formation was applied to (actually more recent work on infinite state sequences
indicates that it is indeed co-induction, cf. [22]). The inductive step requires the
local correctness conditions for term-rewrite rules.

The global correctness theorem is rather independent of the languages and
only requires the notion of expressions and instruction pointers stemming from
basic-block graph based intermediate languages, and the notion of register stem-
ming from register-based target processor architectures, i.e. the same require-
ments as for code selection by term-rewriting. The precondition on live values
can be analyzed upon compilation and is therefore part of the verification of
the back-end implementation. It is a good candidate for program checking ap-
proaches [15,17]. However, proving the local correctness conditions is language-
dependent and should be done for each compiler.

86 W. Zimmermann

5 Proof Strategies for Correctness of Code Selection

Typical compiler-backends often require several thousand term-rewrite rules. The
correctness of term-rewrite rules therefore cannot be proven manually. The main
idea to prove mechanically correctness of term-rewrite rules is to symbolically exe-
cute the LHS of a term-rewrite rule and the code to be generated from it. For each
of the two classes of term-rewrite rules there is one simple proof strategy.

Consider first term-rewrite rules of the form t → X{m1, . . . , mn}. We have
basically to ensure that Condition (i) is satisfied and that no other register
changes its content. The variables in the term-rewrite rule stand for registers
containing some live values. We therefore use each of these variable names as
symbolic register names. The expression evaluation eval (t) is executed symboli-
cally with these symbolic register names using the definition of Fig. 2 extended by
reading register access as described by Example 4. Furthermore, the instruction
sequence m1, . . . , mn is also evaluated symbolically using the state transition
rules of Fig. 4. Then, the result will be checked whether reg(X) contains the
result of the symbolic evaluation of eval (t) and nothing else (except the instruc-
tion pointer) changed. The requirement on the instruction pointer is satisfied as
long as the machine instruction sequence does not contain jump instruction.

Example 5. Consider Rule 6. The symbolic evaluation of a 32-bit integer con-
stant yields eval (intc32) = SExt32(c32). Suppose that c32 = [b31, . . . , b0]. Then
SExt32(c32) = [b31, . . . , b31︸ ︷︷ ︸

32 times

, b31, . . . , b0]. Symbolic execution of the first instruc-

tion LDA X, (c32.L)R31 yields reg(X) = reg(R31) ⊕ SExt16(c32.L)
= 0 ⊕ SExt16([b15, . . . , b0])
= [b15, . . . , b15︸ ︷︷ ︸

48 times

, b15, . . . , b0])

Then, the instruction ZAP X, #fc, X is executed:

reg(X) = zerobytes(reg(X), 11111100)
= zerobytes([b15, . . . , b15︸ ︷︷ ︸

48 times

, b15, . . . , b0], 11111100)

= [0, . . . , 0︸ ︷︷ ︸
48 times

, b15, . . . , b0]

Finally, LDAH X, (c32.H)X is executed:
reg(X) = reg(X) ⊕ LogShift(SExt16(c32.H)), 16)

= [0, . . . , 0︸ ︷︷ ︸
48 times

, b15, . . . , b0] ⊕ LogShift([b31, . . . , b31︸ ︷︷ ︸
48 times

, b31, . . . , b16], 16)

= [0, . . . , 0︸ ︷︷ ︸
48 times

, b15, . . . , b0] ⊕ [b31, . . . , b31︸ ︷︷ ︸
32 times

, b31, . . . , b16, 0, . . . , 0︸ ︷︷ ︸
16 times

]

= [b31, . . . , b31︸ ︷︷ ︸
32 times

, b31, . . . , b0]

All other dynamic functions except ip do not change, because the transition rules
of ASMs explicitely specify state changes. In particular each dynamic function
that is not updated remains unchanged.

On the Correctness of Transformations in Compiler Back-Ends 87

This proof strategy always works for this kind of transformation rules since in
a term-rewrite rule t → X{m1, . . . , mn} the term t is just an expression and
therefore does not cause side-effects.

Now, we consider term-rewrite rules of the form t → •{m1, . . . , mn}. Here, a
similar strategy as above is used. The difference is that the execution of t causes
state changes (in particular in the memory) and these state changes must be the
same as caused by the machine instruction sequence m1, . . . , mn. Therefore, we
symbolically execute the state transition caused by t using the state transition
rules of Fig. 2 and symbolically execute the machine instruction sequence using
the state transition rules of Fig. 4 and the fact base = reg(R30), i.e., the base
address is stored in register R30. We use symbolic register addresses and compare
the resulting state changes according to condition (iii).

Example 6. Consider Rule 3. According to the state transitions in Fig. 2, after
execution of addr c16 := Y , we obtain the only state change

mem(eval (addr c16)) := eval(rg(Y)) = mem(base ⊕ SExt16(c16)) := reg(Y)
= mem(reg(R30) ⊕ SExt16(c16)) := reg(Y)

According to the state transitions of Fig. 4, executing STQ Y, (c16)R30 would
yield the state transition: mem(reg(R30) ⊕ SExt16(c16)) := reg(Y) As one can
see, these are exactly the same updates which are executed.

If more than one machine instruction is executed then the updates stemming
from the machine instructions are composed. Again, this proof strategy always
works for term-rewrite rules of the form t → •{m1, . . . , mn} because here t is an
instruction and it is the state transitions that are of interest.

These two proof strategies can easily be implemented. The implementation
can be parameterized with the semantics of the intermediate and the target
language. The size of the equalities to be proven could explode exponentially in
n, the number of machine-instructions to be generated. However, this number is
usually rather small.

6 Assembly

For a complete back-end remains to discuss assembly.The binary has to be mapped
into the linear memory of the target machine. Thus, each label of a basic block is
mapped to the address of the first instruction of the basic block and each jump-
instruction has as an argument the address of the basic block associated with the
jump target. There are three possible cases to map jumps: First, two basic blocks
bb1 and bb2 are mapped consecutively and bb2 is the single successor of bb1. Then,
no jump is necessary. If the jump instruction and the jump target are close enough,
a relative jump can be made, i.e. the relative address of the jump target is directly
encoded in the jump instruction. Otherwise, the jump target has to be loaded as
a constant into a register. The registers used for loading this constant must not
contain live values. Note that all registers assigned by local register assignment in
the code selection phase satisfy this property. Hence registerswith these properties
can be determined at compile time.

88 W. Zimmermann

jmp(L) → • {} if l = current ⊕Q 4 Rule 17
jmp(L) → • {BR Ri, #l41 · · · l61} if −222 ≤ l < 222 Rule 18
jmp(L) → • {LDA Ri, (l.LL)R31

ZAP Ri, #fc, Ri
LDAH Ri, (l.LH)Ri
BR Rj, #000001
ADD Ri, Rj, Ri
ADD Ri, #08, Ri
JMP Rj, Ri}

if −231 ≤ l < −222 or 222 ≤ l < 231 Rule 19

jmp(L) → • {LDA Ri, (l.HH)R31
SLL Ri, #10, Ri
LDA Ri, (l.HL)Ri
SLL Ri, #10, Ri
LDA Ri, (l.LH)Ri
SLL Ri, #10, Ri
LDA Ri, (l.LL)Ri
BR Rj, #000001
ADD Ri, Rj, Ri
ADD Ri, #08, Ri
JMP Rj, Ri}

if l < −231 or l ≥ 231 Rule 20

where current = addrbb(labjmp(L)) ⊕Q lenbb(lab(jmp(L))), l = addrbb(L) − current ,
l.LL, l.LH , l.HL, and l.HH are the 1st, 2nd, 3rd, and 4th sixteen bits of l, and Ri.

Rj are registers which don’t contain live values

Fig. 11. Mapping of Jumps

Example 7. We have to map basic block graphs consisting of DEC-Alpha ma-
chine instructions and symbolic jumps to a linearized assembly program. The
mapping addrbb : LABEL → QUAD maps each label of a basic block to a rel-
ative address. The mapping lenbb : LABEL → QUAD maps each basic block
(identified by its unique symbolic label) to its length in the binary code. These
mappings have to be computed by a compiler. Note that this implies that the
address of the jump instruction current and the relative distance l to the jump
target can be computed at compile time6. The transformations in Fig. 11 are used
for mapping unconditional jumps. The transformations for conditional jumps are
analogous. The first transformation is used if the successor block is mapped con-
secutively, the second is used if the relative distance to the jump target can
be encoded as a 21-bit relative address. The last two transformations load the
jump target directly into register Ri . Note that the registers required for this
transformation must be free. The instruction BR Rj, #000001 is required to load
pc ⊕Q 4 into register Rj . The two ADD-instructions adjust the correct address of
the jump target since it must be relative to the address of the last instruction of
the basic block. Note that this address is given by current . It is not difficult to
prove that these transformations are locally correct. The proofs follow the same
strategy as in Fig. 10(b).

Similar to the code selection phase, the compiler performs a planning phase
where it computes addrbb, for each basic block the transformations applied to
its jump instructions, and a function jumps : LABEL → QUAD that computes
6 lab(jmp(L)) is the label of the basic block that contains the jump instruction jmp(L)

where the transformation rule is applied.

On the Correctness of Transformations in Compiler Back-Ends 89

the size of these jump instructions. For the example of the DEC-Alpha processor,
it holds:

jumps(L) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−4 if Rule 17 is applied to the jump in lab−1(L)
0 if Rule 18 is applied to the jump in lab−1(L)
24 if Rule 19 is applied to the jump in lab−1(L)
40 if Rule 20 is applied to the jump in lab−1(L)

Note that lenbb(L) = length(lab−1(L)) ⊗Q 4 ⊕ jumps(L) since each instruction
requires 4 bytes space (length denotes the length of a sequence). The total size
of the code is lenbb(L0) + · · · + lenbb(Lm) where L0, . . . , Ln are the labels of all
basic blocks in the program. The assembly phase might optimize this total code
size. Alternatively, other criteria might be used.

For the correctness of the assembly phase, it is not hard to see that it is suffi-
cient to prove the conditions in Fig. 12. The first condition states that instruc-
tions of a basic block are mapped consecutively without gaps in the same order
as in the basic block. The second condition states that two basic blocks do not
overlap. The last condition states that the transformation rules of Fig. 11 are cor-
rectly applied and that jumps(L) is large enough to store the jump instructions
of the basic block with label L. Note that all conditions of the transformation
rules can be checked at compile time. Together with the local correctness of the
transformations for the jumps this implies by induction on the number of state
transitions the global correctness of the assembly phase.

The technique of program checking may be used for checking the conditions
in Fig. 12. Note that checking these proof obligations except the last one is in-
dependent of the concrete target language because the functions instrα addrbb,
lenbb, length, and jumps must be computed for any register based target lan-
guage and basic-block based intermediate language. Checking the last condition
requires only the knowledge of the transformation rule to be applied and the size
of an instruction (which is 4 in the example of DEC-Alpha). It is not hard to see
that this checking algorithm requires time O(n + k log k) where n is the num-
ber of instructions in the target program and k is the number of basic blocks.
Checking the first and the third condition in Fig. 12 requirerconstant time (for
a single instruction), hence they require a total of time O(n). For checking the
second condition, the labels are sorted according to their addresses. Then, it is
sufficient to check the second condition only for the consequetive labels.

7 Related Work

The kind of code generation discussed in Section 3 was first introduced as
bottom-up rewrite systems (BURS) [40]. Several works improve this technique.
Emmelmann implemented this technique in BEG [14,13] and adds algebraic iden-
tities and uses dynamic programming to find cost-optimal rule covers. [44] uses
tree automata to execute the term-rewriting. This has the additional advantage
that completeness of the specification w.r.t. the intermediate language can be

90 W. Zimmermann

instr(L, i) = instr(addrbb(L) + i · 4) for all labels L, 0 ≤ i < length(lab−1(L))
and instr(L, i) is not a jump instruction

addrbb(L1) − addrbb(L2) < lenbb(L2) for all labels L1, L2, L1 �= L2

For each transformation rule JMP(L) → •{m1, . . . , mn} if cond
applied in a basic block with label L′

jumps(l) = (n − 1) · 4 ∧ cond ∧ instr(addrbb(L′) + l · 4) = m1∧∧ · · · ∧ instr(addrbb(L′) ⊕Q (l + n − 1) · 4) = mn

where l = length(lab−1(L′)) − 1

Fig. 12. Proof Obligations for Correctness of Assembly Phase

decided efficiently. Nymeyer et. al. [38] use A∗-search in order to find rule covers.
None of these works discussed the correctness of code generation.

Correctness of compilers was first considered in [31]. They discussed the com-
pilation of arithmetic expressions. Samet used an approach that we now call
translation validation [45,46,48,47,49]. There are a number of works using deno-
tational semantics, e.g. [8,33,39,43,52]. Other works use the approach of refining
language constructs, e. g. [6,7,9,27,32,34,50], or structural operational semantics,
e. g. [11]. Often these works consider single phases of a compiler. E.g. [50] dis-
cusses intermediate language generation. The code selection phase for generating
binary code is often not considered in works on compiler correctness. [32] dis-
cusses the compilation of a stack-based intermediate language into a register
based assembly language. [34,27] consider the Transputer as target-machines.
Each of these works check transformations in hand-written compiler back-ends.
They don’t discuss correctness of transformation rules used by generated term-
rewrite based compiler back-ends.

Program checking in code generators was independently developed from us
in the area of safety-critical systems [41] and is called translation validation by
them. The difference to general compilers is that their target code has a special
form and it mainly consists of an implementation of a finite state machine.
Zuck et. al. extended the ideas to validate certain optimizing transformations
[54,56,55,2,23]. Necula uses a similar approach for checking local optimizations
in basic blocks [36]. Glesner and Blech apply translation validation to constant-
folding [18]. Glesner et. al. use translation validation for correctness for the lexical
analysis of the GNU C compiler [19] and generalize the approach of [15] to code
generators for embedded systems [20]. However, translation validation does not
help to identify erroneous transformation rules - it just tells that something in
the compilation went wrong.

In contrast to our work, works on verifying compiler optimization focuses on
specific parts of a compiler. Blech and Glesner prove the correctness of some
optimizations using Isabelle/HOL [4,3]. Lacey et. al. use temporal logic for this
purpose [28,29]. These works have in common that they do not change the lan-
guage level. Strecker shows the correctness of transformations from a subset of
Java (μJava) to Java Byte Code using Isabelle/HOL [51]. Schmid et. al. showed
the proof for Java except threads [50] but used a paper and pencil approach.
Blech, Glesner et.al. show the correctness of translations of SSA-intermediate
languages to machine languages[5]. Poetzsch-Heffter and Gawkowski propose a

On the Correctness of Transformations in Compiler Back-Ends 91

similar approach for C[42]. Both approaches use Isabelle/HOL. They assume
that there is one-to-one correspondence between machine operations and inter-
mediate language operations. Dold, v. Henke and Goerigk developed in Verifix a
completely verified compiler (in binary code) for a LISP subset[12]. The proofs
were checked using PVS. Leinenbach, Paul, and Petrova developed in the frame-
work of the VeriSoft-project a verified macro-expansion based compiler for a
Pascal/C-subset using Isabelle/HOL[30]. A final remark: Proof Carrying Code
[35] and Certifying Compilers [37,10] check necessary conditions for the correct-
ness of compilation while Verifix and translation validation approaches check
sufficient conditions.

8 Conclusions

We have shown how the transformations in compiler back-ends can be completely
verified. It requires abstract state machine specifications for the semantics of
the intermediate and target languages, respectively. The local correctness of the
transformation rules can then be mechanically verified by using two proof strate-
gies that suffice if the transformations for code selection and assembly are given
as term-rewrite rules. The composition as simulation proofs is guaranteed under
rather general requirements to intermediate and target languages, respectively.
However, for the code selection the compiler has to check whether no register
is written that contains a live value, i.e., a value that is still required. Having
annotations to the intermediate program giving a rule cover for each instruction,
a register assignment w.r.t. a rule cover, and a schedule specifying the order of
application of term-rewrite rules, this can easily be checked independently of
the compiler. Similarly, the compiler has to check the conditions in Fig. 12 for
the assembly phase. This suggests to use techniques of program checking for
that purpose. If this program checker and the module actually performing the
term-rewriting is verified, it is guaranteed that any code generated by a compiler
actually preserves the observable behaviour of the intermediate program.

It should be noted that the proof strategies for term-rewrite rules also work for
local optimizations. However, for global optimizations such e.g. code motion, it
does notwork since they cannot be expressed as local transformation rules on trees.
Instead, graph-rewrite rules should be used. Adding edges stemming from data-
flow information might result in local graph transformations as e.g. be used in op-
timizer generators [1]. The same idea could be applied when instruction-scheduling
techniques are applied. For pipelined architecturs and instruction-level parallelism
SSA-graphs are the more suitable intermediate representation. First steps towards
this direction are made[5]. However, it does not yet cover the full power of instruc-
tion scheduling approaches. This is subject to further research.

The strength of formal approaches was demonstrated by finding a serious
bug in the specification of DEC-Alpha back-end developed by a student project.
It was an erroneous version of the transformation for loading large constants
discussed in Section 5. It was accidently overseen that loading 16-bit constants
into register automatically sign-extends the constant. If correctness proofs fail,
error messages should provide claims that have to be proven for ensuring local

92 W. Zimmermann

correctness of transformation rules. In the above case, this would ideally produce
an error message requiring to prove that the bit 15 of a constant must be 0. This
is a precise hint on what went wrong. From a practical viewpoint the use of
formal methods in Verifix turned out to be successfull.

The lessons we learned about the use of the formal methods is that they
should satisfy several requirements to be successfull in practice:

– A formal method shouldn’t restrict the problem to be solved in any way.
E.g. in Verifix we ruled out denotational semantics for language semantics
since it seems that there are some requirements on compositionality.

– A formal method should take into account practical requirements. E.g. the
notion of correctness in Verifix had to take into account resource limitations
because of practical needs. This notion deviates from that in more theoretical
approaches.

– A formal method should not restrict in any way design decisions for systems
to be build. Otherwise, it won’t be accepted by practicioners. E.g., in Verifix
we stressed that by keeping the well-established architecture of compilers.

– Tool support is necessary because of the size and complexity of the proofs
to be performed. Their underlying formal method should support tools to
produce helpful error messages. In Verifix we used PVS for that purpose.

In particular the last issue is important for an increasing acceptance of formal
methods by practicioners.

Acknowledgements. I thank the two anonymous referees for their helpful com-
ments. I’m grateful to all colleagues of the Verifix project in Karlsruhe, Kiel, and
Ulm for the inspiring and fruitful discussions.

References

1. U. Assmann. Graph rewrite systems for program optimization. ACM Transactions
on Programming Languages and Systems, 22(4):583–637, 2000.

2. C. Barrett, B. Goldberg, and L. Zuck. Run-time validation of speculative opti-
mizations using CVC. Electronic Notes in Theoretical Computer Science, 89(2),
2003.

3. J. O. Blech, L. Gesellensetter, and S. Glesner. Formal verification of dead code
elimination in Isabelle/HOL. In 3rd IEEE International Conference on Software
Engineering and Formal Methods. IEEE Computer Society Press, 2005. to appear.

4. J. O. Blech and S. Glesner. A formal correctness proof for code generation from
SSA form in Isabelle/HOL. In Informatik 2004, number P-51 in Lecture Notes
in Informatics, pages 449–458. Springer, 2004. Proceedings der 3. Arbeitstagung
Programmiersprachen (ATPS) auf der 34. Jahrestagung der Gesellschaft fr Infor-
matik.

5. J. O. Blech, S. Glesner, J. Leitner, and S. Mlling. Optimizing code generation from
SSA form: A comparison between two formal correctness proofs in Isabelle/HOL.
Electronic Notes in Theoretical Computer Science, to appear, 2005. Proceedings of
the 4th COCV-Workshop (Compiler Optimization meets Compiler Verification).

6. E. Brger and I. Durdanovic. Correctness of compiling occam to transputer. The
Computer Journal, 39(1):52–92, 1996.

On the Correctness of Transformations in Compiler Back-Ends 93

7. E. Brger, I. Durdanovic, and D. Rosenzweig. Occam: Specification and Compiler
Correctness.Part I: The Primary Model. In U. Montanari and E.-R. Olderog,
editors, Proc. Procomet’94 (IFIP TC2 Working Conference on Programming Con-
cepts, Methods and Calculi). North-Holland, 1994.

8. D. F. Brown, H. Moura, and D. A. Watt. Actress: an action semantics directed
compiler generator. In Compiler Compilers 92, volume 641 of Lecture Notes in
Computer Science, 1992.

9. B. Buth, K.-H. Buth, M. Fränzle, B. v. Karger, Y. Lakhneche, H. Langmaack, and
M. Müller-Olm. Provably correct compiler development and implementation. In
U. Kastens and P. Pfahler, editors, Compiler Construction, volume 641 of Lecture
Notes in Computer Science. Springer, 1992.

10. C. Colby, P. Lee, G. C. Necula, F. Blau, M. Plesko, and K. Cline. A certifying
compiler for Java. In Proceedings of the ACM SIGPLAN 2000 conference on Pro-
gramming language design and implementation, pages 95–107. ACM Press, 2000.

11. S. Diehl. Semantics-Directed Generation of Compilers and Abstract Machines. PhD
thesis, Universität Saarbrücken, 1996.

12. A. Dold, F. W. von Henke, and W. Goerigk. A completely verified realistic
bootstrap compiler. International Journal on Foundations of Computer Science,
14(4):659–680, 2003.

13. H. Emmelmann. Codeselektion mit regulär gesteuerter Termersetzung. PhD thesis,
Universität Karlsruhe, Fakultät für Informatik, GMD-Bericht 241, Oldenbourg-
Verlag, 1994.

14. H. Emmelmann, F.-W. Schröer, and R. Landwehr. BEG – a Generator for Efficient
Back Ends. In Proceedings of the Sigplan ’89 Conference on Programming Language
Design and Implementation, June 1989.

15. T. Gaul, A. Heberle, W. Zimmermann, and W. Goerigk. Construction of verified
software systems with program-checking: An application to compiler back-ends.
In A. Pnueli and Paolo Traverso, editors, Proceedings of RTRV ’99: Workshop on
Runtime Result Verification, Trento, Italy, 1999.

16. T.S. Gaul. An Abstract State Machine Specification of the DEC-Alpha Processor
Family. Verifix Working Paper [Verifix/UKA/4], University of Karlsruhe, 1995.

17. S. Glesner. Using program checking to ensure correctness of compiler implemen-
tations. Journal of Universal Computer Science, 9(3):191–222, 2003. Special Issue
on Compiler Optimization meets Compiler Verification.

18. S. Glesner and J.-O. Blech. Classifying and formally verifying. In 2nd Workshop
on Compiler Optimization meets Compiler Verification COCV2003, volume 82 of
Electronic Notes in Theoretical Computer Science, 2003.

19. S. Glesner, S. Forster, and M. Jäger. A program result checker for the lexical
analysis of the gnu c compiler. In 3rd International Workshop on Compiler Opti-
mization meets Compiler Verification COCV2004, Electronic Notes in Theoretical
Computer Science, 2004.

20. S. Glesner, R. Geiß, and B. Bösler. Verified code generation for embedded sys-
tems. In 1st Workshop on Compiler Optimization meets Compiler Verification
COCV2002, volume 65 of Electronic Notes in Theoretical Computer Science, 2002.

21. S. Glesner, G. Goos, and W. Zimmermann. Verifix: Konstruktion und Architektur
verifizierender bersetzer. IT – Information Technology, 46(5):265–276, 2004.

22. S. Glesner and W. Zimmermann. Structural Simulation Proofs based on ASMs
even for Non-Terminating Programs. In Proceedings of the ASM-Workshop, Eight
International Conference on Computer Aided Systems Theory EUROCAST 2001,
Feb 2001.

94 W. Zimmermann

23. B. Goldberg, L. Zuck, and C. Barrett. Practical issues in translation validation for
optimizing compilers. Electronic Notes in Theoretical Computer Science, 132(1),
2005.

24. G. Goos and W. Zimmermann. Verification of compilers. In B. Steffen E.-
R. Olderog, editor, Correct System Design, volume 1710 of Lecture Notes in Com-
puter Science, pages 201–230. Springer, 1999.

25. Y. Gurevich. Evolving algebras 1993: Lipari guide. In E. Brger, editor, Specification
and Validation Methods, pages 9–36. Oxford University Press, 1995.

26. Y. Gurevich. May 1997 Draft of the ASM Guide. Technical Report CSE-TR-336-
97, University of Michigan EECS Department, 1997.

27. C.A.R. Hoare, He Jifeng, and A. Sampaio. Normal Form Approach to Compiler
Design. Acta Informatica, 30:701–739, 1993.

28. D. Lacey, N. D. Jones, E. Van Wyk, and C. C. Frederiksen. Proving correctness
of compiler optimizations by temporal logic. In Proc. 29th ACM Symposium on
Principles of Programming Languages, pages 283–294. Association of Computing
Machinery, 2002.

29. D. Lacey, N. D. Jones, E. Van Wyk, and C. C. Frederiksen. Compiler optimization
correctness by temporal logic. Higher Order and Symbolic Computation, 17(3):173–
206, 2004.

30. D. Leinenbach, W. Paul, and E. Petrova. Towards the formal verification of a C0
compiler: Code generation and implementation correctness. In 3rd IEEE Interna-
tional Conference on Software Engineering and Formal Methods. IEEE Computer
Society Press, 2005. to appear.

31. J. McCarthy and J.A. Painter. Correctness of a compiler for arithmetical expres-
sions. In J.T. Schwartz, editor, Proceedings of a Symposium in Applied Mathe-
matics, 19, Mathematical Aspects of Computer Science. American Mathematical
Society, 1967.

32. J S. Moore. Piton: A Mechanically Verified Assembly-Level Language. Kluwer
Academic Press, Dordrecht, The Netherlands, 1996.

33. P. D. Mosses. Abstract semantic algebras. In D. Bjørner, editor, Formal description
of programming concepts II, pages 63–88. IFIP IC-2 Working Conference, North
Holland, 1982.

34. M. Müller-Olm. Modular Compiler Verification: A Refinement-Algebraic Approach
Advocating Stepwise Abstraction, volume 1283 of Lecture Notes in Computer Sci-
ence. Springer, Berlin, Heidelberg, New York, 1997.

35. G. C. Necula. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 106–119. ACM
Press, 1997.

36. G. C. Necula. Translation validation for an optimizing compiler. In PLDI’00: SIG-
PLAN Conference on Programming Language Design and Implementation, pages
83–95. ACM, 2000.

37. G. C. Necula and P. Lee. The design and implementation of a certifying compiler.
In Proceedings of the 1998 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 333–344, 1998.

38. A. Nymeyer, J.-P. Katoen, Y. Westra, and H. Ablas. Codegeneration = A∗+BURS.
In Compiler Construction, volume 1060 of Lecture Notes in Computer Science,
pages 160–176. Springer, 1996.

39. J. Palsberg. An automatically generated and provably correct compiler for a subset
of Ada. In IEEE International Conference on Computer Languages, 1992.

On the Correctness of Transformations in Compiler Back-Ends 95

40. E. Pelegr-Llopart and S.L.Graham:. Optimal code generation for expression trees:
An application of BURS theory. In Principle of Programming Languages POPL’88,
pages 294–308. ACM, 1988.

41. A. Pnueli, O. Shtrichman, and M. Siegel. Translation validation for synchronous
languages. Lecture Notes in Computer Science, 1443, 1998.

42. A. Poetzsch-Heffter and M. Gawkowski. Towards proof generating compilers. Elec-
tronic Notes in Theoretical Computer Science, 132(1), 2005.

43. W. Polak. Compiler specification and verification. In J. Hartmanis G. Goos, editor,
Lecture Notes in Computer Science, volume 124 of Lecture Notes in Computer
Science. Springer, 1981.

44. T. A. Proebsting. BURS automata generation. ACM Transactions on Programming
Languages and Systems, 17(3):461–486, 1995.

45. H. Samet. Automatically proving the correctness of translations involving optimized
code. PhD thesis, 1975.

46. H. Samet. Compiler testing via symbolic interpretation. In ACM 76: Proceedings
of the annual conference, pages 492–497, New York, NY, USA, 1976. ACM Press.

47. H. Samet. A machine description facility for compiler testing. IEEE Transactions
on Software Engineering, 3(5):343–351, 1977.

48. H. Samet. A normal form for compiler testing. In Proceedings of the 1977 sympo-
sium on Artificial intelligence and programming languages, pages 155–162, 1977.

49. H. Samet. Proving the correctness of heuristically optimized code. Communications
of the ACM, 21(7):570–582, 1978.

50. R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine. Springer,
2001.

51. M. Strecker. Formal verification of a Java compiler in Isabelle. In Proc. Conference
on Automated Deduction (CADE), volume 2392 of Lecture Notes in Computer
Science, pages 63–77. Springer Verlag, 2002.

52. M. Wand. A semantic prototyping system. SIGPLAN Notices, 19(6):213–221, June
1984. SIGPLAN 84 Symposium On Compiler Construction.

53. W. Zimmermann and T. Gaul. On the Construction of Correct Compiler Back-
Ends: An ASM-Approach. Journal of Universal Computer Science, 3(5):504–567,
1997.

54. L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. VOC: A Translation Validator
for Optimizing Compilers. In J. Knoop and W. Zimmermann, editors, Electronic
Notes in Theoretical Computer Science, volume 65. Elsevier, 2002.

55. L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. Voc: A methodology for the trans-
lation validation of optimizing compilers. Journal of Universal Computer Science,
9(3):223–247, 2003.

56. L. Zuck, A. Pnueli, Y. Fang, B. Goldberg, and Y. Hu. Translation and run-time
validation of optimized code. Electronic Notes in Theoretical Computer Science,
70(4), 2002.

Accurate Theorem Proving

for Program Verification�

Byron Cook1, Daniel Kroening2, and Natasha Sharygina3

1 Microsoft Research
2 ETH Zurich

3 University of Lugano

Abstract. Symbolic software verification engines such as Slam and
ESC/Java often use automatic theorem provers to implement forms of
symbolic simulation. The theorem provers that are used, such as Sim-
plify, usually combine decision procedures for the theories of uninter-
preted functions, linear arithmetic, and sometimes bit vectors using tech-
niques proposed by Nelson-Oppen or Shostak. Programming language
constructs such as pointers, structures and unions are not directly sup-
ported by the provers, and are often encoded imprecisely using axioms
and uninterpreted functions.

In this paper we describe a more direct and accurate approach to-
wards providing symbolic infrastructure for program verification engines.
We propose the use of a theorem prover called Cogent, which provides
better accuracy for ANSI-C expressions with the possibility of nested
logic quantifiers. The prover’s implementation is based on a machine-
level interpretation of expressions into propositional logic. Cogent’s
translation allows the program verification tools to better reason about
finite machine-level variables, bit operations, structures, unions, refer-
ences, pointers and pointer arithmetic.

This paper also provides experimental evidence that the proposed
approach is practical when applied to industrial program verification.

1 Introduction

Program verification engines, such as symbolic model checkers and advanced
static checking tools, often employ automatic theorem provers for symbolic rea-
soning. For example, the static checkers ESC/Java [2] and Boogie [3] use
the Simplify [4] theorem prover to verify user-supplied invariants. The Slam
[5,6,7,8,9,10] software model-checker uses Zapato [11] for symbolic simulation
of C programs. The Blast [12] and Magic [13] tools use Simplify for abstrac-
tion, simulation and refinement. Other examples include the InVeSt [14] tool,
which uses the PVS [15] theorem prover. Further decision procedures used in
program verification are CVC-lite [16], ICS [17] and Verifun [18].

The majority of these theorem provers use either the Nelson-Oppen [19] or
Shostak [20] combination methods. These methods combine various decision pro-
cedures to provide a rich logic for mathematical reasoning.
� This paper is an extended version of [1].

T. Margaria and B. Steffen (Eds.): ISoLA 2004, LNCS 4313, pp. 96–114, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Accurate Theorem Proving for Program Verification 97

However, the fit between the program analyzer and the theorem prover is
not always ideal. The problem is that the theorem provers are typically geared
towards efficiency in the mathematical theories, such as linear arithmetic over
the integers. In reality, program analyzers rarely need reasoning for unbounded
integers. Linearity can also be too limiting in some cases. Moreover, because lin-
ear arithmetic over the integers is not a convex theory (a restriction imposed by
Nelson-Oppen and Shostak), the real numbers are often used instead. Program
analyzers, however, need reasoning for the reals even less than they do for the
integers.

The program analyzers must consider a number of issues that are not easily
mapped into the logics supported by the theorem provers. These issues include
pointers, pointer arithmetic, structures, unions, and the potential relationship
between these features. Additionally, because bit vectors and arrays are not con-
vex theories, many provers do not support them. In those that can, the link
between the non-convex decision procedures can be disappointing. As an exam-
ple, checking equality between a bit-vector and an integer variable is typically
not supported.

When using provers such as Simplify, the program verification tools must
encode the features specific to programming languages into the input logic of
the theorem prover, and approximate the language semantics with axioms over
the symbols used during the encoding. However, using axioms to encode the
language semantics has a drawback in that they can interact badly with the
heuristics that are often used by provers during axiom-instantiation in order to
improve performance—at the expense of accuracy.

Another problem that occurs when using provers such as Simplify or Zapato
is that, when a query is not valid, the provers do not supply concrete counterex-
amples. Some provers provide partial information on counterexamples. However,
in program verification this information rarely leads to concrete valuations to
the variables in a program, which is what a programmer most wants when a
program verification tool reports a potential bug in their source code.

This paper addresses the following question: When analyzing programs, can we
abandon the Nelson-Oppen/Shostak combination framework in favor of a prover
that performs a basic and precise translation of program expressions into propo-
sitional logic?

Inspired by the success of CBMC [21] and UCLID [22], this paper describes
a new theorem prover called Cogent which provides direct support for queries
in the form of pure ANSI-C [23] expressions together with quantifiers. Cogent
largely dispenses with the mathematical theories for unbounded integers and
real numbers, and the communication between theories through equivalence re-
lations. Instead, Cogent provides machine-level accurate reasoning for the class
of expressions that occur in programs and program invariants.

Much like CBMC, the implementation of Cogent is based on a direct com-
pilation of expressions into propositional logic. When necessary (for example,
in order to handle arrays with unbounded size), Cogent uses uninterpreted

98 B. Cook, D. Kroening, and N. Sharygina

functions with Ackerman’s encoding. A similar approach is found in UCLID.
Pointers are represented as regions with finite vectors and offsets.

Cogent’s translation allows the program verification tools to accurately rea-
son about arithmetic overflow, bit operations, structures, unions, pointers and
pointer arithmetic. Cogent can be used for different software verification appli-
cations. As an example, when applied to software model checking it can be used
within the abstraction refinement framework [24,25] for abstraction, simulation,
and abstraction refinement. Cogent also produces concrete counterexamples to
failed proofs.

This paper makes the following novel contributions:

– We provide details on an accurate translation from C expressions together
with nested quantifiers into propositional logic. While Cogent is based
on parts of the CBMC source code, this paper extends it by using non-
determinism to model architecture dependent behavior. When combined
with predicate abstraction, like in SLAM, this technique guarantees that
a positive verification result is valid on all standard compliant architectures.

– We demonstrate that the new approach improves the performance of software
model checking. In particular, we report results of replacing Slam’s theorem
prover Zapato with Cogent. This allows us to speed up the verification of
previously checked safety properties of Windows device drivers. The speedup
is caused by the improved accuracy of Cogent. Moreover, the Cogent-
based model checker allows us to verify new properties that make use of
bit-level constructs. In this paper, we describe a new Windows device driver
bug that was found due to Cogent’s improved accuracy. The Zapato-based
Slam is unable to locate this bug.

– We also report the results of experiments from queries that come from ex-
tended static checking with Boogie.

The queries from Slam and Boogie differ significantly in their characteris-
tics, which allows us to evaluate Cogent’s performance under different circum-
stances. Slam’s queries have no quantifiers but make extensive use of structures,
pointers, arithmetic and bit operations. Boogie’s queries, on the other hand,
have nested quantifiers and some uninterpreted functions, but do not use pointer
semantics.

The remainder of this paper is organized as follows: Section 2 surveys related
work; Section 3 describes the algorithm used by Cogent; Section 4 presents
the results of our experiments with Cogent and Slam on benchmarks from
Windows device drivers; Section 5 describes the results of Cogent when used
to verify conditions generated by Boogie. Section 6 concludes the paper and
Section 7 discusses future work.

2 Related Work

In this work we are following the basic proof strategy used by CBMC [21] and
UCLID [22]. 1) The input logic of Cogent is translated eagerly into proposi-

Accurate Theorem Proving for Program Verification 99

tional logic. 2) The resulting propositional formula is then passed to an efficient
SAT solver.

The difference between our approach and UCLID is the logic supported by the
provers. UCLID does not support the low-level programming language features
that Cogent does. On the other hand, Cogent does not support features such
as λ-abstraction, which is supported by UCLID.

The experimental application of UCLID to software verification is limited
to a restricted set of theorem proving queries from software model checking
in [26]. However, neither the relative effect on accuracy nor the effect on the
model checking performance was measured, as UCLID was not integrated into
an abstraction refinement loop.

To the best of our knowledge (beyond the experiments in [26]), no-one has
evaluated the performance of an eager and purely SAT-based theorem prover
implementation in abstraction-based symbolic software model checking nor ex-
tended static checking. The use of SAT for the abstraction of ANSI-C programs
was suggested in [27,28]. No comparative evaluation was done, however, and no
support for quantifiers was provided.

Cogent is not unique in its support for accurate reasoning for bit-vectors.
Numerous tools implement bit-vector reasoning, particularly hardware verifica-
tion tools (e.g., [29,30]). Some bit-vector level decision procedures have been
adapted to fit into the Nelson-Oppen/Shostak’s cooperating decision procedure
framework (e.g., [31]). The key difference between the bit-vector support found
in Cogent and these provers is that our translation fully accounts for the se-
mantics of the ANSI-C standard [23], using non-determinism in cases where the
standard does not specify the details of the machine representation of the data
types.

Some program verification tools do not use general purpose theorem provers at
all. For example, PREfix [32] and ESP [33] use custom symbolic simulators in
which they mix their own language semantics together with the abstractions used
in order to make their verification engines scale to large programs. CMC [34] uses
a similar approach. Our work is motivated by these efforts. We aim to provide
accurate support for the C semantics at the same level of detail as PREfix. Note
that Cogent does not provide any abstractions—we expect that the program
verification tool performs the abstraction, if needed, while using Cogent for
symbolic reasoning.

Cogent builds on the source code of CBMC [21]. Cogent and CBMC
differ in that Cogent supports quantifiers and uses non-determinism to take
architecture-dependencies into account. They also differ in their intended use:
Cogent is designed to be a sound theorem prover for use in any program veri-
fication engine, whereas CBMC is a program verification engine by itself.

While not related directly, this work can contribute to the predicate ab-
straction refinement framework with predicates that contain quantifiers, such as
described in [35]. The applications proposed by the authors (hardware and soft-
ware) would benefit from the accuracy provided in Cogent.

100 B. Cook, D. Kroening, and N. Sharygina

3 Encoding into Propositional Logic

In hardware verification, the encoding of arithmetic operators such as shifting,
addition, and even multiplication into propositional logic using arithmetic circuit
descriptions is a standard technique. We propose using this same style of encod-
ing in Cogent. This allows us to model artifacts such as arithmetic overflow
accurately.

The goal is to implement the ANSI-C standard semantics, as described in [23].
The standard purposely does not provide precise semantics. This is to allow an
efficient implementation on different architectures. As an example, the behavior
in the case of arithmetic overflow on signed integer types is undefined. Thus,
using a true machine-like bit-encoding would be an under-approximation of the
behavior allowed by the standard. Potentially, this can lead to incorrect verifi-
cation results, making the verification tool unsound. Therefore, the answers of
the prover would be only valid for architectures that use the same bit-encoding.
On other architectures, the program might execute in a different way.

In order to avert this problem, we model the architecture-dependent parts
of the language semantics by introducing non-determinism into the encoding.
A non-deterministic choice can be encoded in propositional logic by using free,
unconstrained variables. In order to decide whether to use the non-deterministic
choice or not, we add additional checks to the arithmetic operators. If an operator
obtains operands for which the result is architecture dependent, the result of the
operator is a non-deterministic choice.

In the context of software verification, if the prover reports that the property
is verified, the property holds for any architecture compliant with the standard.

3.1 Scalar Data Types

The scalar data types are encoded using a particular bit width for each data
type. This bit-width is a run-time option. The arithmetic operators (e.g., ad-
dition, multiplication, division) and the bit-wise operators are transformed into
corresponding arithmetic circuits using basic gates such as AND, OR, NOT.
These circuits are then transformed into propositional logic.

Optimizations for Division. While a standard arithmetic circuit for addition,
subtraction, multiplication and shifting provides sufficient performance, imple-
menting an iterative division circuit using propositional logic is prohibitively
expensive. We therefore implement the division and remainder operators as fol-
lows: we use non-deterministic choice to guess the correct result of the division,
i.e., the quotient q and the remainder r, and then add constraints that these
guesses are correct. I.e., we return q, r such that q ∗ b + r = a. This requires one
multiplication, one addition and one equality test. Note however, that the mul-
tiplication and the addition must be forced (by adding appropriate constraints)
not to overflow, or wrong results would be obtained.

Accurate Theorem Proving for Program Verification 101

Arithmetic Overflow on Unsigned Types. On unsigned integer types, the ANSI-
C standard requires modular arithmetic, i.e., the result is required to be a bit-
encoding of r mod 2n, where r is the result obtained with infinite precision and
n is the number of bits. Using arithmetic circuits accurately models these se-
mantics, so no non-determinism is required.

Arithmetic Overflow on Signed Types. On signed integer types, the ANSI-C stan-
dard leaves the behavior in case of arithmetic overflow undefined. In particular,
the semantics of a two’s complement encoding are not guaranteed.

Formally, let overflow+(a, b) denote a Boolean function that is true if and
only if the sum of a and b is outside the interval given by INT MIN and INT MAX.
Let a⊕b denote the bit-vector operator for adding a and b. Let ⊥ denote a vector
of free, new variables with the same width as the addition result. The result of
a signed addition is denoted by op s+.

op s+(a, b) := overflow+(a, b)?⊥ : a ⊕ b

Note that the case-split on the overflow is translated as part of the circuit, and
thus performed dynamically by the propositional logic solver, not during trans-
lation. A similar definition is used for subtraction, multiplication, and bitwise
shifting.

3.2 Structures, Unions, and Bounded Arrays

Structures and small arrays are encoded in a straight-forward manner by re-
cursively concatenating the bit-vectors that encode their components. Large
arrays are treated like arrays with unbounded size, which is described in the
next section. The prover query language contains operators to extract members
from a structure and to replace members. If an array index operation is out
of bounds, the value of the index operator is a vector of free variables, i.e., it
is non-deterministically chosen. In contrast to that, when using a conventional
theorem prover such as Simplify, arrays and structures are typically encoded
using uninterpreted functions and axioms. This requires expensive heuristics for
quantifier instantiation.

Unions are encoded using a pair of bit-vectors. The first bit-vector is as wide
as the widest bit-vector of any of the union members. It encodes the value of the
union. The second bit-vector is a binary encoding of the number of the member
that was used last for writing into the union. During member extraction, we
check that the extracted member matches the member used for writing. If they
do not match, the value of the member extraction operator is a vector of free
variables.

3.3 Unbounded Arrays

Programs may allocate arrays of variable size. Encoding such an array using
a bit-vector is infeasible. Thus, we model unbounded arrays as uninterpreted
functions using Ackermann’s reduction, as done in CBMC [21]. Note that the
contents of the array are still interpreted as bit-vectors.

102 B. Cook, D. Kroening, and N. Sharygina

3.4 Pointers

We encode the value of a pointer using two bit-vectors. Let p denote a pointer
type expression. The first bit-vector, denoted by p.o, encodes the object the
pointer points to, while the second bit-vector, denoted by p.i, encodes an index
within that object using two’s complement. The width of p.i is the same as the
width used for the integer type. The width of p.o is dynamically adjusted to
accommodate the number of objects mentioned within the query. The object
bit-vector consisting of all zeros is used to encode a NULL pointer1.

The offset bit-vector is used to encode the position of the pointer within the
object. In case of an array consisting of elements of a scalar data type, this
value is equal to the array index, independent of the size of the scalar data type.
Structures consisting of n fields with scalar data types are treated like an array
with n elements, even if the types of the individual fields have different widths.

If arrays and structures are nested, the offset bit-vector is equal to the number
of the scalar type variable inside the nested data structure.

Address Operator and Pointer Arithmetic. The encoding above models the se-
mantics of the ANSI-C pointer operators accurately. The unary & operator re-
turns the address of the object passed as operand. The operand may contain
field access and array index operators. These operators are handled by adjusting
the index bit-vector. As the array index may be a variable, the formula built for
the index bit-vector may require addition and multiplication.

The pointer arithmetic operands only adjust the index bit-vector, never the
object bit-vector. The logic includes predicates that allow checking for overflow
and underflow on pointer arithmetic operations, if desired.

Function Pointers. Functions mentioned in the query are assigned object numbers
just as variables. However, the ANSI-C standard provides no semantics for arith-
metic on pointers pointing to functions. Thus, the pointer arithmetic operators
return non-deterministic results when applied to pointers that point to functions.

Relational Operators. When checking equality between two pointers, as specified
by the ANSI-C standard, the object bounds have to be considered. If the index
bit-vector of the pointer is not within the object, we call the pointer out-of-
bounds. As a special case, the index bit-vector of the pointer can be exactly
one element beyond the end of the object. We call such a pointer an off-by-one
pointer. In case of a pointer pointing to the NULL object, any index bit-vector
other than zero is considered to be out of bounds. These comparisons are done
dynamically by encoding an arithmetic circuit for the relations on the index
bit-vector and the object size, which may be a variable.

We form an equation that dynamically distinguishes the following cases:

– If both pointers are within their bounds, the result of the comparison is equal
to bitwise equality of both components of the pointer.

1 Note that the ANSI-C standard prohibits dereferencing a NULL pointer. It is a com-
mon misunderstanding that dereferencing NULL will result in the value zero.

Accurate Theorem Proving for Program Verification 103

– If both pointers point to the same object (i.e., the object bit-vectors are
bitwise equal) and both pointers are within their bounds or off-by-one, the
result of the comparison is equal to bitwise equality of the index bit-vector.

– Otherwise, the result is a free, unconstrained variable.

When checking the other relations (greater than, and so on), the standard
requires that the two pointers must point to the same object. Also, the pointer
must be within the bounds or off-by-one. The result of the comparison is a
non-deterministic choice if either check fails.

3.5 Quantifiers

The sections above describe the translation of formulae into propositional logic.
In these formulae, all variables are assumed to be implicitly universally quan-
tified. However, some program analysis tools make use of nested quantifiers. In
most cases, Cogent is able to rewrite the input query in such a way that the
quantifiers can be encoded directly into propositional logic with fresh variables
and Skolemization. In the worst case, Cogent will translate the input formula
into propositional logic with quantifiers (called quantified Boolean formulae or
QBF) instead of the standard propositional logic—we believe that this case will
not occur frequently in practice.

3.6 Examples

In order to summarize the techniques above, consider the following examples.
Given the formula Q

p+x!=q || &(p->y) == &((q-x)->y)

let p and q be two pointers to a structure containing a member y. Let x be an
integer variable.

This formula is translated into propositional logic as follows. First, two new
Boolean variables α and β are allocated for the two operands of the OR operator.
Then, we add the following constraint:

Q ⇐⇒ α ∨ β

We then add the constraints for the left-hand side operand of the OR operator.
We allocate bit-vectors for p.i, p.o, q.i, q.o, and x. We assume that n is the
number of elements of simple type in the structure, and that ⊗ is the bit-vector
multiplication operator.

α ⇐⇒ (p.i ⊕ (x ⊗ n) �= q.i) ∨ (p.o �= q.o)

Note that this constraint does not contain the bounds check for the object
pointed to by p and q.

104 B. Cook, D. Kroening, and N. Sharygina

For the encoding of the right-hand side of the OR operator, suppose that y is
the second member of the structure. Thus, the index bit-vector is increased by
one when taking the address of p->y.

β ⇐⇒ (p.i ⊕ 1 = (q.i � (x ⊗ n)) ⊕ 1) ∧ (p.o = q.o)

This simple example illustrates the complexity of mixing pointer arithmetic
with structures and arrays. In contrast to our tool, existing decision procedures
are unable to handle even such simple examples.

In order to illustrate an invalid query generating a counterexample, consider
the formula R

!(p==a+2 && q==a+n && p==q)

where a is an array, p and q are pointers, and n is an integer. Again, we first assign
fresh Boolean variables α2 β2, and γ2 to the operands of the AND operator:

R ⇐⇒ !(α2 ∧ β2 ∧ γ2)

The encoding of the constraints for the pointer arithmetic is done similarily
as above for α. The object a is assigned a number. Suppose this number is 1.
When passed to a SAT solver, we obtain a satisfying assignment with n = 2, a
value of 1 for the object of p and q, and a value of 2 for the offset of p and q.

4 Application to Software Model Checking

One popular approach to software model checking is called counter-example guided
abstraction refinement (CEGAR). Slam, for example, implements CEGAR
for the C programming language. CEGAR implementations [24,25,36,37,13,
14,12] often use automatic theorem provers to implement the abstraction and re-
finement components of this algorithm. In this section, we briefly describe the CE-
GAR approach, and then present results of an experiment with Slam where we
have replaced the theorem prover Zapato with Cogent.

4.1 Software Model Checking with Counter-Example Guided
Abstraction-Refinement

Predicate abstraction [38,39] is a method for systematically constructing conser-
vative abstractions of software. It abstracts data by only keeping track of certain
predicates on the data. Each predicate is represented by a Boolean variable in
the abstract program, while the original data variables are eliminated. The pred-
icate abstraction of software is usually automated. For example, in Slam, the
predicate abstraction is implemented in a module called C2bp [40,5].

In practice, the set of predicates must be discovered by trial-and-error. Typi-
cally, CEGAR implementations guess the initial set of predicates. If the abstrac-
tion is computed using an insufficient set of predicates, then the model checker
will find a false error in the abstraction—called a spurious trace. There are two

Accurate Theorem Proving for Program Verification 105

sources of spurious traces: 1) the set of predicates is insufficient, and 2) C2bp
trades accuracy for efficiency.

Slam first uses Newton [6] to symbolically simulate the entire trace and
determine if it is spurious. If the trace is spurious, then Newton searches for
additional predicates which could eliminate the trace in a refined abstraction.

If no new predicates are found, Slam concludes that the spurious trace is
caused by the inexact abstraction done by C2bp. It then invokes another refine-
ment method, called Constrain [7]. Constrain symbolically examines each
step of the trace in isolation and attempts to refine the abstract transition re-
lation in order to improve the accuracy of the abstraction using the predicates
that are available.

Bydefault,NewtonandConstrainbothuse the theoremproverZapato [11].
As is done in [26], C2bp does not call a theorem prover. Instead, it uses a module
called FastCovering that implements a form of parallel inference.

4.2 Experiments with SLAM

We have integrated Cogent with Slam and compared the results to Slam us-
ing its original theorem prover, Zapato. Note that, in our integration, C2bp
still uses FastCovering. FastCovering is currently an extremely weak in-
ference engine that produces poor abstractions when uncommon symbols (like
the C bitwise operations) appear in the sets of predicates. As a consequence,
Slam/Cogent is at a disadvantage over Slam/Zapato, as the abstraction of
bitwise operations must be done in a needlessly inefficient manner with Con-
strain. For a more optimal result, FastCovering should perform an analysis
similar to Cogent in order to provide better abstractions.

4.2.1 Comparing the Model Checking Results
In order to compare the overall effect of Cogent on Slam we ran Slam/Cogent
on 308 model checking benchmarks and compared the results to Slam/Zapato.
The results are given in Fig. 1.

Model checking result Slam/Zapato Slam/Cogent
Property passes 243 264
Time threshold exceeded 39 17
Property violations found 17 19
Cases of abstraction-refinement failure 9 8

Fig. 1. Comparison of Slam/Zapato to Slam/Cogent on 308 device driver correct-
ness model checking benchmarks. The time threshold was set to 1200 seconds.

The Slam/Cogent performs considerably better that Slam/Zapato. No-
tably, the number of cases where Slam exceeded the 1200 second time threshold
was reduced by half. As a result, the reduced timeouts led to two additional bugs

106 B. Cook, D. Kroening, and N. Sharygina

being found. The cases where Slam failed to refine the abstraction (as described
in detail in [7]) was effectively unchanged.

During Slam’s execution, the provers actually returned different results in
some cases. This is expected, as the provers support different logics:

– Zapato provides support for uninterpreted functions together with UTVPI
integer arithmetic [41]. In addition, Zapato supports expressions with point-
ers only through axioms and a heuristic for dynamic axiom instantiation.

– Cogent, on the other hand, supports full arithmetic over bit vectors to-
gether with a more accurate handling of pointers and structures. Cogent
is strictly more accurate than Zapato.

For this reason, there are queries that Zapato can prove valid and Cogent can
prove invalid (e.g., when overflow is ignored by Zapato), and vice-versa (e.g.,
when validity is dependent on pointer arithmetic or non-linear uses of multipli-
cation). Thus, it is difficult to compare the accuracy of Zapato to Cogent. We
have, however, compared the overall performance of the two provers and found
that Cogent is usually more than 2x slower than Zapato. On 2000 theorem
proving queries Zapato executed for 208s, whereas Cogent ran for 522s. We
can therefore conclude that the performance improvement in Fig. 1 is indicative
that, while Cogent is slower, Cogent’s increased accuracy allows Slam to do
less work overall.

4.3 Checking New Properties of Windows Drivers

During the formalization of the kernel API usage properties that Slam is used
to verify [25], a large set of properties were removed or not actively pursued due
to inaccuracies in Slam’s theorem prover. For this reason the results in Fig. 1
are not fully representative of the improvement in accuracy that Slam/Cogent
can give.

In order to demonstrate this improved accuracy, we developed and checked
several new safety properties that would have resulted in too many false bugs
being reported in Slam/Zapato. Fig. 2 contains an example of such a property,
written in Slam’s event-based property language called Slic [42]. It makes use
of Cogent’s treatment of bit vectors, structures and pointers. This rule checks
that a Windows device driver always sets a special bit in a field of a structure
to 0 before returning from its AddDevice callback routine.

This property has the effect of instrumenting three events into the driver when
Slam performs symbolic model checking:

– Calls from the device driver to the kernel function IoCreateDevice, which
(in the case the function returns successfully) causes an assignment of 1 to
the variable created.

– Calls from the device driver to the kernel function IoDeleteDevice, which
causes an assignment of 0 to the variable created.

Accurate Theorem Proving for Program Verification 107

// The variable "created" is 0 when the special variable pdevobj is not
// pointing to something that has been allocated. It is set to
// 1 when it is.
state
{

int created = 0;
}

// IoCreateDevice will, if successful, place the pointer pdevobj in the
// handle passed to it.
IoCreateDevice.exit
{

if ($return==STATUS_SUCCESS) {
created = 1;

}
}

IoDeleteDevice.exit
{

created = 0;
}

// If the driver has an AddDevice callback, it will be called fun_AddDevice
#ifdef fun_AddDevice
fun_AddDevice.exit
{

// pdevobj is the pointer returned the environment model
// for IoCreateDevice
if (created && (pdevobj->Flags & DO_DEVICE_INITIALIZING) != 0) {

abort "AddDevice routine failed to set ~DO_DEVICE_INITIALIZING flag";
}

}
#endif

Fig. 2. Slic device driver safety property using C bit operations

– Returns from the device driver’s AddDevice callback routine.2 When this
event occurs, a check (under the condition that the device object has been
allocated) ensures that the driver has negated the DO DEVICE INITIALIZING
flag in the device object structure that was allocated.

This rule is checked together with a main function that calls the driver’s
AddDevice routine from an unspecified state, and a set of non-deterministically
abstracted models of the kernel functions that the driver might call.

Fig. 3 displays the environment model for the function IoCreateDevice that
is used while checking device drivers with Slam. This function can return any

2 AddDevice is referred to as a C macro called fun AddDevice in the property. Before
Slam is used to perform model checking, an initial scan of the driver’s source code is
done and special callbacks found during this pass are defined using the C macro lan-
guage.Thesemacros are then called from theproperties and kernel environmentmodel.

108 B. Cook, D. Kroening, and N. Sharygina

NTSTATUS
IoCreateDevice(

DRIVER_OBJECT * DriverObject,
unsigned long int DeviceExtensionSize,
UNICODE_STRING * DeviceName,
DEVICE_TYPE DeviceType,
unsigned long int DeviceCharacteristics,
unsigned int Exclusive,
DEVICE_OBJECT **DeviceObject
)

{
switch (MakeNondeterministicChoice()) {
case 0: (*DeviceObject) = pdevobj;

pdevobj->Flags |= DO_DEVICE_INITIALIZING;
return STATUS_SUCCESS;

case 1: (*DeviceObject) = NULL;
return STATUS_INSUFFICIENT_RESOURCES;

case 2: (*DeviceObject) = NULL;
return STATUS_OBJECT_NAME_EXISTS;

default: (*DeviceObject) = NULL;
return STATUS_OBJECT_NAME_COLLISION;

}
}

Fig. 3. Nondeterministic environment model of Windows kernel function
IoCreateDevice for device driver verification with Slam

of four possible return values. In the case that it returns STATUS SUCCESS it sets
the DO DEVICE INITIALIZING flag in pdevobj’s Flags field to 1.

We checked this new property on 15 Windows device drivers using both
Slam/Zapato and Slam/Cogent. When using Zapato, Slam found false
errors in each driver. When using Cogent as the prover, Slam was able to
verify the correctness of all but one driver. In the case of this one driver, Slam
produced a counterexample that pointed to a real and previously unseen bug.

5 Application to Extended Static Checking

Boogie [3] is an implementation of Detlef et al.’s notion of extended static check-
ing [43] for the C# programming language. Extended static checkers attempt to
automatically verify manually added pre- and post-conditions in code. It can also
be used to ensure that client-code respects the pre-conditions, and does not assume
too much of the post-conditions. Boogie, using a notion of weakest-
preconditions, computes verification conditions that can be checked by an auto-
matic theorem prover.Boogie uses Simplify to formally validate the conditions.

In order to demonstrate the applicability of Cogent to extended static check-
ing, we have applied it to verification conditions generated by Boogie and com-
pared the results to those of Simplify. The runtimes in seconds are given in Fig. 4.

Accurate Theorem Proving for Program Verification 109

Benchmark # Cogent Simplify
1 0.010s 0.029s

2 0.013s 0.029s

3 0.012s 0.028s

4 0.041s 0.042s

5 0.573s 0.452s

6 0.001s 0.026s

7 0.002s 0.026s

8 0.002s 0.027s

9 0.042s 0.045s

10 0.043s 0.051s

11 0.030s 0.045s

12 0.002s 0.025s

13 0.003s 0.026s

14 0.093s 0.100s

15 26.217s 15.735s

16 0.001s 0.024s

17 0.001s 0.025s

18 0.002s 0.026s

19 0.010s 0.030s

20 0.013s 0.029s

21 0.013s 0.028s

22 0.042s 0.043s

23 0.571s 0.455s

24 0.001s 0.026s

25 0.001s 0.026s

26 0.003s 0.027s

27 0.042s 0.045s

Benchmark # Cogent Simplify
28 0.044s 0.050s

29 0.030s 0.045s

30 0.002s 0.025s

31 0.003s 0.026s

32 0.093s 0.111s

33 27.772s 16.311s

34 0.001s 0.024s

35 0.001s 0.025s

36 0.002s 0.025s

37 0.010s 0.038s

38 0.014s 0.030s

39 0.012s 0.029s

40 0.042s 0.042s

41 0.573s 0.457s

42 0.002s 0.026s

43 0.001s 0.025s

44 0.002s 0.027s

45 0.042s 0.045s

46 0.043s 0.050s

47 0.030s 0.045s

48 0.002s 0.025s

49 0.003s 0.026s

50 0.092s 0.112s

51 30.813s 70.763s

52 0.001s 0.024s

53 0.001s 0.024s

54 0.001s 0.025s

Fig. 4. Comparison of Simplify and Cogent on 54 verification conditions generated
by Boogie

Unlike we did in the case of Slam, we have not yet fully integrated Boogie
and Cogent. For the purpose of this experiment we first annotated the variable
names in the input C# programs with their types—Boogie currently does not
pass any type information down to the theorem prover. We then ran Boogie on
the programs and collected the verification conditions. We converted the queries
from Simplify’s input format into the syntax of Cogent, and removed the ax-
ioms and artifacts of the Simplify-specific encoding. Note that the comparison
is not quite fair: Simplify’s execution time includes parsing, whereas parsing
and translation is not included in the Cogent execution time.

The verification conditions mix both finite and infinite types together with ref-
erences. Objects of unbounded types were encoded with uninterpreted functions
and axioms. The verification conditions did not contain any pointer arithmetic,

110 B. Cook, D. Kroening, and N. Sharygina

nor C-style unions. They did, however, contain some examples with bit-level
operations. In particular, one C# program models a microprocessor (as described
in some detail in [44]) and makes heavy use of bit-level programming constructs.

For the harder queries, Cogent was faster in one instance, whereas Simplify
was faster in two. Unlike Slam, Boogie does not use the results of the validity
checks during its analysis, so the increased accuracy provided by Cogent does
not improve the overall performance of Boogie.

Note that C# provides an unsafe extension, in which pointer arithmetic and
other C-like features can be used. This is, for example, how C# calls C code.
Using the increased accuracy of Cogent for low-level programming features,
Boogie could potentially analyze mixtures of unsafe and safe code.

6 Conclusion

Automatic theorem provers are often used by program verification engines. How-
ever, the logics implemented by these theorem provers are not typically ideal for
the program verification domain. In this paper, we have described a new prover
that accurately supports the type of reasoning that program verification engines
require.

The prover’s strategy is to directly encode input queries into propositional
logic. This encoding accurately supports bit operations, structures, unions, point-
ers and pointer arithmetic, and pays particular attention to the sometimes sub-
tle semantics described in the ANSI-C standard. We have detailed the prover’s
translation of queries into propositional logic. We have also reported experimen-
tal results that demonstrate the performance and accuracy improvements of the
approach. We make the tool and the bitvector benchmark files used available on
the web3 in order to allow other researchers to reproduce our results.

7 Future Work

As future work, we would like to further extend the prover with features that
can be useful for symbolic program verification tools. As an example, the prover
should take a query that represents a symbolic state of a program and apply a
widening operation such that verification engines based on abstract interpreta-
tion [45] could potentially reach a fixpoint. Additionally, we would like to make
use of interpolants [46,47] in Cogent.

A number of modern automatic theorem provers, such as CVC-lite, Zapato,
ICS and Verifun, produce proofs. These proofs can be used in cases to quickly
determine why a query is valid. When used for symbolic simulation, this allows
us to find a small set of facts that cause a trace to be spurious. SAT-solvers for
propositional logic typically can produce an unsatisfiable core which has similar
information. For this reason, Cogent is able to produce information that is
similar—but not identical—to the proofs generated by traditional provers. In
3 http://www.inf.ethz.ch/personal/kroening/cogent/

Accurate Theorem Proving for Program Verification 111

the future we would like to demonstrate that the unsatisfiable cores can provide
the same benefit to symbolic simulators as the proofs.

As mentioned in Section 4, the abstraction module of Slam uses FastCov-
ering, which is similar to [26] but optimized for speed and not precision. The
motivation behind this approach is to avoid the exponential number of calls to
a theorem prover—as originally proposed in [38]. As we replaced Zapato with
Cogent in Section 4, we would also like to replace FastCovering with a new
module that supports the same level of accuracy as Cogent.

There are a number of areas for potential performance improvement in Co-
gent. We would like to optimize Cogent and then perform more extensive
empirical comparisons. Additionally, we would like to better integrate Cogent
with Boogie and compare the approaches on a larger set of benchmarks.

Acknowledgments

The authors would like to thank Mike Barnett, Sergey Berezin, Vijay Ganesh,
Rustan Leino, Madan Musuvathi, and Lintao Zhang for their ideas and com-
ments related to this work.

References

1. Cook, B., Kroening, D., Sharygina, N.: Cogent: Accurate theorem proving for
program verification. In Etessami, K., Rajamani, S.K., eds.: Proceedings of CAV
2005. Volume 3576 of Lecture Notes in Computer Science., Springer Verlag (2005)

2. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: PLDI 02: Programming Language Design
and Implementation. (2002)

3. Barnett, M., DeLine, R., Fahndrich, M., Leino, K.R.M., Schulte, W.: Verification of
object-oriented programs with invariants. Journal of Object Technology 3 (2004)
27–56

4. Detlefs, D., Nelson, G., , Saxe, J.B.: Simplify: A theorem prover for program
checking. Technical Report HPL-2003-148, HP Labs (2003)

5. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate ab-
straction of C programs. In: PLDI 01: Programming Language Design and Imple-
mentation, ACM (2001) 203–213

6. Ball, T., Rajamani, S.K.: Generating abstract explanations of spurious counterex-
amples in C programs. Technical Report MSR-TR-2002-09, Microsoft Research
(2002)

7. Ball, T., Cook, B., Das, S., Rajamani, S.K.: Refining approximations in software
predicate abstraction. In: TACAS 04: Tools and Algorithms for Construction and
Analysis of Systems, Springer-Verlag (2004)

8. Ball, T., Rajamani, S.K.: Bebop: A symbolic model checker for Boolean programs.
In: SPIN 00: SPIN Workshop. LNCS 1885. Springer-Verlag (2000) 113–130

9. Ball, T., Rajamani, S.K.: Automatically validating temporal safety properties of
interfaces. In: SPIN 00: SPIN Workshop. LNCS 1885. Springer-Verlag (2000)
113–130

112 B. Cook, D. Kroening, and N. Sharygina

10. Ball, T., Rajamani, S.K.: Bebop: A path-sensitive interprocedural dataflow engine.
In: PASTE 01: Workshop on Program Analysis for Software Tools and Engineering,
ACM (2001) 97–103

11. Ball, T., Cook, B., Lahiri, S.K., Zhang, L.: Zapato: Automatic theorem proving
for predicate abstraction refinement. In: CAV 04: International Conference on
Computer-Aided Verification. (2004)

12. Henzinger, T.A., Jhala, R., Majumdar, R., Qadeer, S.: Thread modular abstraction
refinement. In: CAV 03: International Conference on Computer-Aided Verification,
Springer Verlag (2003) 262–274

13. Chaki, S., Clarke, E., Groce, A., Strichman, O.: Predicate abstraction with min-
imum predicates. In: CHARME 03: Advanced Research Working Conference on
Correct Hardware Design and Verification Methods. (2003)

14. Lakhnech, Y., Bensalem, S., Berezin, S., Owre, S.: Incremental verification by ab-
straction. In: TACAS 01: Tools and Algorithms for the Construction and Analysis
of Systems. (2001)

15. Owre, S., Shankar, N., Rushby, J.: PVS: A prototype verification system. In:
CADE 11: International Conference on Automated Deduction. (1992) Saratoga
Springs, NY.

16. Barrett, C., Berezin, S.: CVC Lite: A new implementation of the cooperating valid-
ity checker. In: CAV 04: International Conference on Computer-Aided Verification.
(2004)

17. Filliatre, J.C., Owre, S., Rue, H., Shankar, N.: ICS: Integrated canonizer and solver.
In: CAV 01: International Conference on Computer-Aided Verification. (2001)

18. Flanagan, C., Joshi, R., Ou, X., Saxe, J.B.: Theorem proving using lazy proof
explication. In: CAV 03: International Conference on Computer-Aided Verification.
(2003) 355–367

19. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems 1 (1979) 245–257

20. Shostak, R.E.: Deciding combinations of theories. Journal of the ACM 31 (1984)
1–12

21. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
TACAS 04: Tools and Algorithms for the Construction and Analysis of Systems.
(2004)

22. Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems using a
logic of counter arithmetic with lambda expressions and uninterpreted functions.
In: CAV 02: International Conference on Computer-Aided Verification. (2002)

23. International Organization for Standardization: ISO/IEC 9899:1999: Programming
languages — C. International Organization for Standardization, Geneva, Switzer-
land (1999)

24. Kurshan, R.: Computer-Aided Verification of Coordinating Processes. Princeton
University Press, Princeton (1995)

25. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and Static Driver Veri-
fier: Technology transfer of formal methods inside Microsoft. In: IFM 04: Fourth
International Conference on Integrated Formal Methods. (2004)

26. Lahiri, S.K., Bryant, R.E., Cook, B.: A symbolic approach to predicate abstraction.
In: CAV 03: International Conference on Computer-Aided Verification. (2003) 141–
153

27. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of ANSI–
C programs using SAT. Technical Report CMU-CS-03-186, Carnegie Mellon Uni-
versity, School of Computer Science (2003)

Accurate Theorem Proving for Program Verification 113

28. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of ANSI–
C programs using SAT. Formal Methods in System Design 25 (2004) 105–127

29. Aagaard, M., Jones, R., Melham, T., O’Leary, J., Seger, C.J.H.: A methodology for
large scale hardware verification. In: FMCAD 02: Formal Methods In Computer-
Aided Design. (2002)

30. Grundy, J.: Verified optimizations for the Intel IA-64 architecture. In: TPHOLs
00: Theorem Proving in Higher-Order Logics. (2000)

31. Barret, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for bit-vector arith-
metic. In: DAC 98: Design Automation Conference. (1998)

32. Bush, W.R., Pincus, J.D., Sielaff, D.J.: A static analyzer for finding dynamic
programming errors. Software—Practice and Experience 30 (2000) 775–802

33. Das, M., Lerner, S., Seigle, M.: ESP: path-sensitive program verification in poly-
nomial time. In: PLDI 02: Programming Language Design and Implementation.
(2002)

34. Musuvathi, M.S., Park, D., Chou, A., Engler, D.R., Dill, D.L.: CMC: A pragmatic
approach to model checking real code. In: OSDI 02: Operating Systems Design
and Implementation. (2002)

35. Lahiri, S.K., Bryant, R.E.: Constructing quantified invariants via predicate ab-
straction. In: Proc. of the 5th Intl. Conference on Verification, Model Checking
and Abstract Interpretation (VMCAI). Number 2937 in LNCS, Springer-Verlag
(2004) 267–281

36. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: CAV 00: International Conference on Computer-Aided
Verification. (2000)

37. Das, S., Dill, D.L.: Successive approximation of abstract transition relations. In:
Proceedings of the Sixteenth Annual IEEE Symposium on Logic in Computer
Science. (2001) June 2001, Boston, USA.

38. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In Grumberg,
O., ed.: CAV 97: Conference on Computer Aided Verification. Volume 1254 of Lec-
ture notes in Computer Science., Springer-Verlag (1997) 72–83 June 1997, Haifa,
Israel.

39. Colón, M.A., Uribe, T.E.: Generating finite-state abstractions of reactive systems
using decision procedures. In: CAV 98: Conference on Computer-Aided Verifica-
tion. Volume 1427 of Lecture Notes in Computer Science., Springer-Verlag (1998)
293–304

40. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and Cartesian abstractions for
model checking C programs. In: TACAS 01: Tools and Algorithms for Construction
and Analysis of Systems. LNCS 2031, Springer-Verlag (2001) 268–283

41. Harvey, W., Stuckey, P.: A unit two variable per inequality integer constraint solver
for constraint logic programming. In: Australian Computer Science Conference
(Australian Computer Science Communications). (1997) 102–111

42. Ball, T., Rajamani, S.K.: SLIC: A specification language for interface checking (of
C). Technical Report MSR-TR-2001-21, Microsoft Research (2001)

43. Detlefs, D.L., Leino, K.R.M., Nelson, G., Saxe, J.B.: Extended static checking.
Technical Report 159, Compaq Systems Research Center (1998)

44. Gurevich, Y., Wallace, C.: Specification and verification of the Windows Card
runtime environment using abstract state machines. Technical Report MSR-TR-
99-07, Microsoft Research (1999)

45. Cousot, P.: Abstract interpretation. Symposium on Models of Programming Lan-
guages and Computation, ACM Computing Surveys 28 (1996) 324–328

114 B. Cook, D. Kroening, and N. Sharygina

46. Thomas A. Henzinger, Ranjit Jhala, R.M., McMillan, K.L.: Abstractions from
proofs. In: POPL 04: Principles of Programming Languages, ACM Press (2004)
232–244

47. McMillan, K.: An interpolating theorem prover. In: TACAS 04: Tools and Algo-
rithms for Construction and Analysis of Systems, Springer-Verlag (2004)

Designing Safe, Reliable Systems Using Scade

Parosh Aziz Abdulla1, Johann Deneux1, Gunnar St̊almarck2,
Herman Ågren2, and Ove Åkerlund2

1 Uppsala University, department of Information Technology
box 337 SE-75105 Uppsala, Sweden

2 Prover Technology AB, Rosenlundsgatan 54 SE-11863 Stockholm, Sweden

Abstract. As safety critical systems increase in size and complexity, the
need for efficient tools to verify their reliability grows. In this paper we
present a tool that helps engineers design safe and reliable systems. Sys-
tems are reliable if they keep operating safely when components fail. Our
tool is at the core of the Scade Design Verifier integrated within Scade,
a product developed by Esterel Technologies. Scade includes a graphical
interface to build formal models in the synchronous data-flow language
Lustre. Our tool automatically extends Lustre models by injecting faults,
using libraries of typical failures. It allows to perform Failure Mode and
Effect Analysis, which consists of verifying whether systems remain safe
when selected components fail. The tool can also compute minimal com-
binations of failures breaking systems’ safety, which is similar to Fault
Tree Analysis. The paper includes successful verifications of examples
from the aeronautics industry.

1 Introduction

Embedded controllers are found in an increasing number of systems. Their role
consists of continuously processing flows of data coming from sensors to control
various devices. The increase in size and complexity of these controllers has
followed that of the systems they belong to. Manual verification is no longer an
option, and non-exhaustive testing has its limits. They must be complemented
with exhaustive methods, if possible in an automated way.

Formal methods such as model checking [10] are good candidates. They have
been improving for several years within the research sector, and have recently
started to reach the industry. Model checking consists of automatically verifying
that a model representing a system meets all of its requirements. In order for
the method to work, both the model and the requirements must be described
formally. We present our tool, Prover SL Data Edition (Prover SL DE), which
performs reachability analysis using SAT-based model checking [9,19]. It is in-
tegrated within several designing tools, including Scade Suite, a set of software
tools developed by Esterel Technologies. Scade Suite includes the following tools:

– A graphical editor to build formal models and to specify safety properties.
Alternatively, it is possible to translate existing models written in other
languages.

T. Margaria and B. Steffen (Eds.): ISoLA 2004, LNCS 4313, pp. 115–129, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

116 P.A. Abdulla et al.

– The Scade Design Verifier, built on top of Prover SL DE, to automatically
verify that models satisfy all safety properties.

– A simulation environment to interactively execute models step by step.
– A C code generator. Since the code is automatically generated from the

formal model, it is correct by construction, assuming the formal model is
correct and the code generator is bug-free.

Designing safe systems is important, but it is also vital to make them reliable
(fault-tolerant) i.e. they must remain safe even during failures of components.
The use of formal methods to prove reliability is an attractive solution, since it
increases the level of confidence in the design. There are two ways to verify that
systems are reliable:

– Failure Mode and Effect Analysis (FMEA). In this approach, one tries to
find the consequences of failures of components. This is usually achieved by
means of simulation.

– Fault Tree Analysis (FTA). This method is the opposite: one wants to find
the causes of a specific safety violation. In other words, the goal is to find
combinations of components which must fail in order to make the system
unsafe.

Both FMEA and FTA are described in details in [22].
In this paper, we present a tool, Prover SL DE, to perform both safety and

reliability analyses, using the two methods described above. We describe the
process of failure injection, as well as our algorithm to perform FTA. We also
demonstrate the usability of our tools on three case studies from aircraft sys-
tems, provided by our industrial partners. The analyses were performed by our
partners.

Related Work. There is a number of tools to perform safety and reliability analy-
sis of complex systems using formal methods:

FSAP/NuSMV-SA [5] uses SMV’s [15] input language as the modeling
language. It supports automated BDD-based [6] verification using NuSMV [8],
fault tree generation and order analysis. Requirements are specified using Com-
putation Tree Logic [3], allowing for both safety and liveness properties.

In [4], Altarica [13] is used to model systems. Fault trees are automati-
cally generated and analyzed using Aralia [12], an efficient BDD-based fault tree
analysis tool. Model checking is performed with Cadence Lab SMV. Safety re-
quirement are specified in Linear Time Logic [17], a logic capable of expressing
both safety and liveness properties.

Scade with Prover SL DE uses symbolic model-checking to verify safety prop-
erties. It differs from these tools in the following ways:

– We use the same formal language both for requirements and for the model,
which may make it easier for system designers and safety engineers to adopt
our tool.

– The SAT-solver in our tool supports rational and integer linear arithmetics,
in addition to non-linear arithmetics over finite domains.

Designing Safe, Reliable Systems Using Scade 117

– The model-checking algorithm does not rely solely on BDDs. Although BDDs
can deal with many large formulas efficiently, they are known to perform
poorly in some cases. In order to be able to handle as many systems as
possible, our tool uses a combination of SAT procedures [11,20] as well as
BDDs.

[16] describes a methodology and a tool allowing to automatically generate
fault trees from Simulink models of hardware and software systems. These fault
trees must then be analyzed using a separate tool, e.g. FaultTree+. This differs
from our approach since our tool computes directly minimal cut sets, whereas
in [16] this task is delegated to FaultTree+ or another fault tree analysis tool.

Outline. This paper is organized as follows: We will first describe in Section 2 the
modeling language used in Scade. Then, in Section 3 we will show how SAT-based
model checking [9,19] is used to automatically verify that the design satisfies all
requirements. Since we are also interested in designing reliable systems, we will
continue in Section 4 with reliability analysis, i.e FTA and FMEA. Finally, in
Section 5 we will provide examples to demonstrate the use of our tools and
evaluate their performance.

2 The Modeling Language

In order to formally verify systems using model checking, one must be able to
build formal models of these systems. We use Lustre [7], a synchronous dataflow
language. It is a relatively simple language whose semantics are unambiguous, yet
its expressiveness is sufficient for designing simple software intended for safety-
critical systems, e.g. software controlling aircraft systems. Moreover, there exist
translators to C [21] which are certified for use in designing safety-critical sys-
tems. Compatibility with such certified tools is a prerequisite for actual use. A
dataflow, or flow, is a variable whose value can change over time. All flows are
synchronized, meaning that there is a single global clock controlling when flows
change. The amount of real time passing between two clock ticks is not nec-
essarily constant. Each flow is typed: it can be Boolean, integer or real. Nodes
combine flows to generate new flows. Several basic nodes are provided: Logic
operators (AND, OR, NOT...), integer and real arithmetic operators (addition,
multiplication, division...). The third type consists of timed operators:

– Delays: The PRE operator makes it possible to refer to the previous value
of a flow. It can, for example, be used to memorize values: A = PRE A. The
current value of A is defined to be the previous of A.

– Initial value: The -> operator is used to specify the value of a flow during
the first time step. Consider the following example: A = True ->!PRE(A).
This defines flow A to be initially True. After that, the value is inverted (!
is the logical NOT operator) every time step, thus modeling a square clock
signal.

118 P.A. Abdulla et al.

A system is modeled as a node, possibly composed of several sub-nodes. Re-
cursion is not allowed, meaning that a node may not include itself as one of
its sub-nodes, or in one of its respective sub-nodes. Therefore, it is possible to
“flatten” the top node by substituting their contents to sub-nodes.

Scade provides a graphical interface to create, edit and visualize nodes. There
are two ways to visualize nodes: The network view (Figure 1) and the state
machine view. A textual equivalent representation of Figure 1 in Lustre can be
seen in figure 2. This fictitious example is a controller for the doors of a lift.
Requests to open the door are received from other parts of the system. These
requests are granted provided that the lift is not in motion, and that it is at
level with the floor. If the open request is granted, the door is kept open until
the safety conditions are violated, or a close request is received.

Lustre is also used for expressing safety requirements. The system being in
a safe state is denoted by a specific Boolean flow in the model being true. The

Fig. 1. Graphical representation of a lift door controller

node LiftDoor(OpenRequest: bool; CloseRequest: bool;
Stopped: bool; AtLevel: bool)

returns (SafeOpen: bool) ;
let
SafeOpen = if (CloseRequest or !Stopped or !AtLevel)

then False
else (False -> (pre SafeOpen)) or OpenRequest ;

tel ;

Fig. 2. Textual representation of the lift door controller

Designing Safe, Reliable Systems Using Scade 119

model checker verifies whether this flow is always true. In other words, it per-
forms safety analysis by proving that the system constantly remains in a safe
state. Popular alternatives for specifying requirements are temporal logics such
as Linear Time Logic or Computation Tree Logic. See for example [14] or [15].
Our decision to use Lustre has the advantage that users need not learn an addi-
tional requirement language. Although this implies that we are limited to verify-
ing safety properties, we consider this to be an acceptable restriction since they
constitute the majority of properties used in safety and reliability analysis.

Back to our lift door example, two requirements could be:

OpensWhenSafe = (OpenRequest and AtLevel and Stopped) implies
SafeOpen;

ClosesWhenUnsafe = (!AtLevel or !Stopped) implies !SafeOpen;

The first requirement ensures that users do not get trapped inside the lift, that
the door opens when requested if it can be done safely. The second requirement
makes sure that the lift cannot harm its passengers by opening while in motion,
or when not at level with the floor.

Lustre supports assertions to restrict the possible values of input flows. Sim-
ilarly to requirements, assertions are represented by Boolean expressions which
must always be True. They differ from requirements in the sense that they ex-
press assumptions about the environment of the system, which is not part of the
model. In the lift door example, we may assume that the environment will never
request to open and close the door simultaneously:

assert !(OpenRequest and CloseRequest);

When generating C code from a Lustre model, assertions can be translated into
C assert macro calls. Assertions are also used by Scade Design Verifier to speed
up the verification. Instead of verifying the model for all possible combinations
of inputs, the verification is limited to those inputs satisfying the assertions.

In the next section, we describe some of the techniques used in Prover SL DE,
upon which Scade Design Verifier is built.

3 Verifying Safety

Prover SL DE verifies safety properties of transition systems. We will first define
the terms transition systems and safety properties, then explain how our tool
performs this kind of verification.

3.1 Transition Systems

A transition system is a tuple (S, S0, T), where

– S is a set of states,
– S0 ⊆ S is the set of initial states
– T ⊆ S × S is the transition relation.

120 P.A. Abdulla et al.

A safety property P is a set of states denoting the good states.
Let ReachT (S) be the set of states reachable from S using the transition

relation T .
We want to decide if a transition system is safe, i.e. given a transition system

M = (S, S0, T) and a safety property P , is it the case that ReachT (S0) ⊆ P?
Lustre models are transition systems. The state of a Lustre model is denoted

by the current values of all its flows. The set of initial states is specified in
the model using initial value (->) operators. The transition relation is specified
using delay operators (PRE). The set of states is the set of all assignments
to flows in the model. This set is potentially infinite, because of the use of
unbounded types (integers and reals). Although Lustre can express complex
arithmetic expressions, Prover SL DE is limited to:

– Linear arithmetics over the set Q of rational numbers, i.e. expressions of the
form:

a0 ∗ C0 + . . . + an ∗ Cn � C

where a0, . . . , an are variables, C, C0, . . . , Cn are constants and
� ∈ {=, �=, >, <, ≤, ≥}.

– Non-linear arithmetics over finite domains.

When presented with a non-linear system, a safety engineer has the following
options:

– Approximate the non-linear expressions by linear ones. For instance, one
can replace the expression sin(x) by a constraint specifying the range of
sin(x), i.e. [−1, 1]. However, this approach can cause verification to find
false positives, or even worse, to miss unsafe behaviors.

– When dealing with arithmetics on integers (a common case), one can fix the
size of operands. This solution is safe, provided the size is equal to he size in
the implementation. However, this can significantly slow down verification.

3.2 SAT-Based Model Checking

Building an explicit representation of the reachable state space is in general not
feasible (in our case it is even impossible). Instead, we represent sets symbolically
using predicates. Checking for the non-reachability of a set of bad states can now
be done by checking non-satisfiability of Boolean and linear arithmetic formulas.
This technique is SAT-based model checking extended to arithmetics.

For a set of states S, let S(s) be a predicate such that s ∈ S ⇐⇒ S(s).
For a sequence of states s0 . . . sn, path(s0 . . . sn) is a predicate denoting that

the sequence corresponds to a path through the graph of the transition relation.

path(s0 . . . sn) = ∀i ∈ {0, . . . , n − 1} : T (si, si+1)

The reachability problem for a transition system (S, S0, T) and a safety prop-
erty P can be reformulated as follows:

∀n ≥ 0 : ∀s0 . . . sn : path(s0 . . . sn) ∧ S0(s0) ⇒ P (sn)

Designing Safe, Reliable Systems Using Scade 121

Two methods to solve this problem are Bounded Model Checking [9] and In-
duction Over Time [19].

The first method is suitable for debugging, i.e. finding errors in unsafe systems.

bmcn(s0 . . . sn) = path(s0 . . . sn) ∧ S0(s0) ⇒ P (sn)

It proceeds iteratively by increasing n until bmcn(s0 . . . sn) is falsifiable, in which
case we have found a shortest path to a bad state. However, this method will
never terminate for safe systems.

In the second method, we try to prove by induction over k that the system is
safe:

– Base case: bmcn(s0 . . . sn) is a tautology.
– Induction hypothesis: ihn(sk . . . sk+n)=path(sk . . . sk+n)∧∀i∈ {0, . . . , n}:

P (sk+i)
– Induction step: isn(sk+n) = ∀sk+n+1 : T (sk+n, sk+n+1) ⇒ P (sk+n+1)

Concretely, we increase n, starting from 0, until:

(∀s0 . . . sn : bmcn(s0 . . . sn)) ∧ (∀sk . . . sk+n : ihn(sk . . . sk+n) ⇒ isn(sk+n))

If we succeed, we have proved that the system is safe. If the system is not safe,
then the Bounded Model Checking step of the base case will detect it. This
procedure is still incomplete: Consider the case where an unreachable loop leads
to a bad state, shown in figure 3. The induction step will never succeed, even
though the system is correct. This is solved [19] by modifying the path predicate
to loop-free paths:

path(s0 . . . sn)=∀i ∈ {0, . . . , n − 1} : T (si, si+1)∧∀j ∈ {0, . . . , n} : i �=j ⇒si �=sj

s0 s1 s2

s4s3

Fig. 3. A good unreachable loop leading to a bad state. The safety property includes
s0, s1, s2 and s3, but not s4. s0 is the initial state.

3.3 Deciding the Satisfiability of Formulas

We have now described how to transform the problem of deciding whether a
transition system is safe into deciding whether a formula is satisfiable or not.
The kind of formulas we have to deal with are math-formulas [2]. A math-formula
combines Boolean propositions and linear arithmetic predicates:

122 P.A. Abdulla et al.

– A constant c in Q is a math-term.
– A variable v over Q is also a math-term.
– c.v is a math-term.
– If t1 and t2 are math-terms, then so are t1 + t2 and t1 − t2.
– A Boolean proposition is a math-formula.
– If t1 and t2 are math-terms, then t1 � t2 where � ∈ {=, �=, >, <, ≤, ≥}, is a

math-formula.
– If φ1 and φ2 are math-formulas, then ¬φ1 and φ1�φ2, where

� ∈ {and, or, implies, not}, are math-formulas.

A naive procedure for deciding the satisfiability of a math-formula, which is
a NP-hard problem [2], is to examine all satisfying assignments to the boolean
variables in the formula, and for each of these solve the resulting system of
linear constraints. The proof engine implements an efficient solver [1] for MATH-
SAT which combines SAT techniques, such as St̊almarck’s saturation method
[20], Davis-Putnam-Loveland-Logemann [11], Reduced Ordered Binary Decision
Diagrams [6], linear programming techniques and constraint propagation. In
practice the proof engine can decide a strict superset of math-formulas, mainly
due to the constraint propagation. Even if a given satisfiable formula contains
non-linear predicates, the proof engine often manages to decide it. In the case of
integers restricted to finite ranges, Prover SL DE converts them to bit vectors,
and uses binary arithmetics to perform all operations. This method is able to
handle non-linear arithmetic over finite ranges.

4 Reliability Analysis

In this section we explain shortly FTA and FMEA, and describe how to use
Scade to design reliable systems.

4.1 FTA and FMEA

A failure is the inability of a piece of equipment to perform its task. Here we make
a distinction between system-level and component-level failures. We restrict the
use of the term “failure” to component-level failures. When the system itself
fails to meet its expected performance, we say it is “unsafe”, or that it violates
a “safety requirement”. A system is reliable when it can sustain several failures
before becoming unsafe. More precisely, it is N-fault-tolerant if it remains safe
unless more than N failures happen. Two popular methods to assess reliability
are Failure Mode and Effect Analysis (FMEA) and Fault Tree Analysis (FTA)
[22]. The term “failure mode” refers to the way a component fails. For instance,
a valve may fail in different ways: It can be stuck in the opened position, in the
closed, or in some intermediate position. Each way of failing is called a failure
mode.

The first method, FMEA, consists of investigating the effects of failure modes.
Designers specify a list of components that fail in addition to the way they fail,
then the system is simulated to check if it becomes unsafe. The second method,

Designing Safe, Reliable Systems Using Scade 123

Door opens unsafely

"At_Level" detector

fails fails

Motion detector

Fig. 4. A simple fault tree

FTA, can be seen as the opposite approach. It aims at finding the causes of safety
violations. A fault tree (Figure 4) is a graph relating failures of components and
safety violations. The root of the tree is called Top Level Event, and represents
an event that should not occur in a safe system. In this example, the top event
consists of the opening of the doors of a lift while it is moving or when it is not at
the level of the floor. The leaves are called basic events. They represent failures
of components as well as their failure mode. Here, the left basic event represents
the event that the motion detector fails to report movement. The right event
denotes the failure of the sensor to detect that the lift is not at the level of the
floor. The internal nodes are Boolean connectives. The connective represented in
this example is an OR gate. The fault tree is in fact a graphical representation
of a Boolean formula satisfied when the system is unsafe. The variables in the
formula denote failures of components. The goal of FTA is to find the minimal
combinations of basic events leading to the top event. In other words, one wants
to compute the minimal cut sets or prime implicants of the Boolean expression
represented by the fault tree.

We have extended Prover SL DE to support these two methods. We will now
describe how we perform reliability analysis using Scade and Prover SL DE.

4.2 Fault Injection

In order to assess the reliability of a system, its model must include failure
modes. The process of adding failure modes into an existing model is called
fault injection. We have implemented a graphical user interface (Figure 5) al-
lowing designers to select the components susceptible to failure as well as their
failure mode. This results in a new model including failure modes, which is
then analyzed using the methods described in section 3. Failures of components
are modeled by modifying flows representing components outputs. The original

124 P.A. Abdulla et al.

Fig. 5. The fault injection panel

flows, called nominal flows, are replaced by modified flows, called extended flows.
The value of an extended flow is decided by the failure mode. All possible failure
modes affecting the nominal flow are modeled by a Lustre node called failure
mode node. A typical failure mode node has two or more inputs and one out-
put. One of the inputs is the nominal flow, and the output is the extended flow.
The remaining inputs are Boolean flows called failure mode variables controlling
which failure mode is triggered. Figure 6 represents two failure modes affecting
a Boolean flow: The value of the nominal flow (in) is ignored and the extended
flow (out) is set to False or True. This failure mode node can be used to model
two failure modes of a switch, for instance:

– FM OFF, in which case the switch acts as if it was stuck in the OFF position,
or

– FM ON, the switch behaves as if it was stuck in the ON position, possibly
because of a short-circuit.

Note that FM OFF and FM ON are Boolean signals, whose values can change. This
allows to model transient errors, e.g. glitches from sensors.

The result of the fault injection into the lift door model (Figure 2) is shown
in Figure 7. The FTA prefix marks extended flows added during fault injection.
FM Fails ON is a failure mode node where a signal remains constantly True.
Flows with names starting with FM trigger failure modes.

4.3 FMEA in Scade

Using the same graphical interface shown in Figure 5, designers constrain the
occurrence of failures. Typical kinds of constraints include:

– At most N failure modes can occur. This is equivalent to “At most N failure
mode variables can switch from False to True”.

Designing Safe, Reliable Systems Using Scade 125

– At most N failure modes can happen simultaneously, which is the same as
“At most N failure mode variables can be True at any point in time”

– Once a component fails, it never recovers and continues to fail indefinitely
– A failure mode X cannot happen.
– When failure mode X is triggered, it continues to happen for (at least, ex-

actly, at most) T time steps.

These constraints are specified in Lustre, in a manner similar to requirements. A
constraint node has a single Boolean output flow, and any number of input flows
of any type. These input flows can take any value, as long as the constraint node’s
output remains True. Scade Design Verifier verifies that the safety requirement
is always respected, assuming all constraints are met. If this is not the case, a
sequence causing the system to become unsafe is returned.

FMEA can be used to gain more information about a particular combination
of failures. In the example of the lift door controller, it is possible to check if
the system may become unsafe when the Stopped sensor has glitches, i.e. the
sensor provides the wrong information, but only for short amounts of time. The

node FM_Fails_ON_or_OFF(in: bool; FM_ON: bool; FM_OFF: bool) returns
(out: bool)

let
out = if (FM_ON) then True else

if (FM_OFF) then False else
in;

assert not (FM_ON and FM_OFF);
tel;

Fig. 6. A failure mode node

node FTA_LiftDoor(OpenRequest : bool ; CloseRequest : bool ;
Stopped : bool ; AtLevel : bool,
FM_Stopped_Fails_ON : bool;
FM_AtLevel_Fails_ON : bool)

returns (SafeOpen : bool) ;
var
FTA_Stopped: bool;
FTA_AtLevel: bool;

let
FTA_Stopped = FM_Fails_ON(Stopped, FM_Stopped_Fails_ON);
FTA_AtLevel = FM_Fails_ON(AtLevel, FM_AtLevel_Fails_ON);

SafeOpen = if (CloseRequest or !FTA_Stopped or !FTA_AtLevel)
then False
else (False -> (pre SafeOpen)) or OpenRequest ;

tel ;

Fig. 7. The model of a lift door after fault injection

126 P.A. Abdulla et al.

safety engineer would constrain FM Stopped Fails ON to remain True e.g. for at
most three consecutive time steps, and verify if the safety requirement can be
violated.

4.4 FTA in Scade

The goal of FTA is to compute the minimal combinations of failures (also
called minimal cut set) causing a safety violation. Our tool proceeds by checking
whether the system is safe assuming that N failure modes occur, starting with
N = 0, and then increasing N . At each step, Scade Design Verifier verifies if the
system is safe. If it is not, the Design Verifier generated a counter-example con-
taining the values of each flow at each time step until the safety requirement was
violated. From this counter-example, the set of flows representing failure modes
that were triggered is extracted. These flows constitute a cut set. The operation
is repeated until all cut sets smaller than a user-fixed limit have been found.

The first step, when N = 0, amounts to verifying that the system is safe. If
it is not, then it is obviously not reliable. Otherwise N is increased to 1 and
the system’s safety is checked again, assuming one failure mode occurs. If the
system is not safe, a counter example is generated. Since the verification was
restricted to the case where one failure mode occurs, one of the failure mode
variables in the counter-example must be True at some point in time. This fail-
ure mode variable represents one of the minimal cut sets of size 1. The tool
continues by doing another analysis with N unchanged until no more cut sets
of size 1 can be found. N is then increased, and the same steps are taken un-
til N reaches a user-fixed limit, usually 4 or 5. The process is summarized below:

ComputeMCS(M: system model, req: safety requirement, Nmax: integer):
Let N be an integer
Let S be a set of cut sets
N := 0
S := {}
Repeat

Let C1 be the constraint:
at most N failure mode variables become True

Let C2 be the constraint:
no combination of failure modes found in S is triggered

Let cx be a counter-example
cx := Verify(C1 ∧ C2, M, req)
If cx is not empty (i.e. the system is not safe)

Extract a cut set s from the counter-example cx

S := S ∪ {s}
Else (i.e. the system is safe) N := N + 1

Until N = Nmax

Verify(C1 ∧ C2, M, req) is a call to the model checker. The verification is con-
strained to those executions satisfying C1 and C2. If the system is not safe, a
counter-example is returned and stored in cx.

Designing Safe, Reliable Systems Using Scade 127

5 Applications

In order to evaluate the tool, our industrial partners provided a number of ex-
amples which they analyzed using our tools. We describe three of them in this
section: air inlet control, nose wheel steering and hydraulic system. All mod-
els are designed and analyzed on widely available laptops equipped with Intel
Pentium3 processors with 512MB of RAM.

5.1 Air Inlet Control

This system is a controller to automatically manoeuvre opening and closing of
doors of an aircraft to regulate the inflow of air to an auxiliary power unit. Since
faulty cooling of the auxiliary power unit is a hazardous event the automated
manoeuvring is safety critical.

This model consists of a state transition diagram, regulating the doors move-
ment. The system contains 21 Boolean inputs, 12 Boolean outputs and 2 rational
inputs. 20 flows among the inputs are affected by fault injection, resulting in 40
new Boolean inputs. Arithmetic expressions found in this model are limited to
simple comparisons.

In this case many variables represent input coming from sensors telling if
doors are closed or open, or information about motor status.

One safety requirement concerns the movement of doors when landing. Land-
ing is detected by a sensor recognizing if there is any weight on the wheels. The
corresponding input flow in the model is named ”weight on wheel”. When this
variable changes from False to True, i.e. a landing event was detected, the airflow
doors must be open.

The verification, taking less than a minute, concludes that the system is safe,
i.e. the requirement is respected when no components fail. It is however not
reliable, since 5 different single failures and 3 double failures can make the system
unsafe. This result was expected.

5.2 Nose Wheel Steering

This example is a control system to ensure suitable manoeuvrability for different
aircraft operations whilst on the ground. It was originally designed in Mathworks,
Matlab/Simulink, then automatically translated using tools from the Scade suite.

The Scade model includes 36 inputs (33 Boolean and 3 rational). The require-
ments concerns the validity of the value of the steering angle, computed by the
controller. It must remain within predefined bounds. All 33 Boolean inputs are
affected by failures, thus doubling the number of variables in the system after
fault injection.

This requirement is fulfilled when no failures are allowed, i.e. the design is
safe. This model is not expected to be reliable. Indeed, 32 minimal cut sets of
size 1 were found. The analysis took about 10 minutes.

128 P.A. Abdulla et al.

5.3 Hydraulic System

This system controls the hydraulic power supply to devices ensuring aircraft
control in flight, landing gear, braking system, etc. Three independent hydraulic
subsystems are shared between consuming devices in order to achieve fault tol-
erance. The hazardous event we want to investigate in this case is the total loss
of hydraulic power.

This system was originally modeled in Altarica, whose semantics are close to
Lustre’s, making it easily translatable to a Scade model. However, the translation
was only partly done automatically, manual intervention was still needed to
complete the translation to Lustre. Since fault injection was performed on the
original Altarica model, it was not performed again on the Scade model. Unlike
the other examples presented in this section, the original model already takes
into account failures of components. It is supposed to be 2-faults tolerant.

This analysis, which took about 3 minutes, found no single or double cut sets,
11 cut sets of size 3 and 24 cut sets of size 4.

6 Conclusion

In this paper we have presented a methodology to perform FMEA and FTA
using Scade Suite and Scade Design Verifier from Esterel Technologies. Scade
Design Verifier is based on the proof engine Prover SL Data Edition from Prover
Technology, which has also been presented.

Future Work. Our users remarked that sequences showing violations of require-
ments are too complex. They contain too many variables, and it is hard to find
which ones are “interesting”, i.e. which variables have a key role in the unrelia-
bility of a system. This problem and several solutions are discussed in [18]. Our
implementation of Fault Tree Analysis, which repeatedly calls the model checker,
is currently quite naive. We plan to optimize the model checker for this kind of
usage, thus possibly reducing the number of calls and hopefully speeding up each
verification. Finally, we will also extend the tool to support order analysis [5].

References

1. Gunnar Andersson, Per Bjesse, Byron Cook, and Ziyad Hanna. A proof engine
approach to solving combinational design automation problems. In Proceedings of
the 39th conference on Design automation, pages 725–730. ACM Press, 2002.

2. Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti, Artur Kornilowicz, and
Roberto Sebastiani. A SAT based approach for solving formulas over boolean
and linear mathematical propositions. In Proceedings of the 18th International
Conference on Automated Deduction, pages 195–210. Springer-Verlag, 2002.

3. M. Ben-Ari, A. Pnueli, and Z. Manna. The temporal logic of branching time. Acta
Informatica, 20:207–226, 1983.

4. Pierre Bieber, Charles Castel, and Christel Seguin. Combination of fault tree analy-
sis and model-checking for safety assessment of complex system. In Proceedings
of the fourth European Dependable Computing Conference (EDCC-4), Toulouse.
Springer Verlag, October 2002.

Designing Safe, Reliable Systems Using Scade 129

5. Marco Bozzano and Adolfo Villafiorita. Improving system reliability via model
checking: The FSAP/NuSMV-SA safety analysis platform. In Proceedings of
the 22nd International Conference on Computer Safety, Reliability and Security
[SAFECOMP 2003], September 2003.

6. R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. on Computers, C-35(8):677–691, Aug. 1986.

7. P. Caspi, D. Pilaud, N. Halbwachs, and J.Plaice. Lustre: a declarative language
for programming synchronous systems. In 14th ACM Symposium on Principles of
Programming Languages, Munchen, January 1987.

8. Alessandro Cimatti et al. NuSMV2: an opensource tool for symbolic model check-
ing. In Ed Brinksma and Kim Guldstrand Larsen, editors, Computer Aided Ver-
ification, volume 2404 of Lecture Notes in Computer Science, pages 359–364.
Springer-Verlag, July 27–31 2002.

9. Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded
model checking using satisfiability solving. Formal Methods in System Design,
19(1):7–34, 2001.

10. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specification. ACM Trans. on Program-
ming Languages and Systems, 8(2):244–263, April 1986.

11. Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Commun. ACM, 5(7):394–397, 1962.

12. Yves Dutuit and Antoine Rauzy. Exact and truncated computations of prime
implicants of coherent and non-coherent fault trees within Aralia. Reliability En-
gineering and System Safety, 1997.

13. Alain Griffault, Sylvain Lajeunesse, Gérald Point, Antoine Rauzy, Jean Pierre Sig-
noret, and Philippe Thomas. The AltaRica language. In Proceedings of the In-
ternational Conference on Safety and Reliability, ESREL’98. Balkema Publishers,
June 20-24 1998.

14. G.J. Holzmann. The model checker SPIN. IEEE Trans. on Software Engineering,
SE-23(5):279–295, May 1997.

15. K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
16. Y. Papadopoulos and M. Maruhn. Model-based synthesis of fault trees from

Matlab-Simulink models. In Proc. International Conference on Dependable Sys-
tems and Networks, 2001, pages 77–82, 2001.

17. A. Pnueli. The temporal logic of programs. In Proc. 18th Annual Symp. Founda-
tions of Computer Science, pages 46–57. IEEE, 31 October–2 November 1977.

18. K. Ravi and F. Somenzi. Minimal assignments for bounded model checking. In
Tools and Algorithms for the Construction and Analysis of Systems: 10th Interna-
tional Conference. Springer-Verlag Heidelberg, April 2004.

19. M. Sheeran, S. Singh, and G. St̊almarck. Checking safety properties using induction
and a SAT-solver. In Int. Conf. on Formal Methods in Computer-Aided Design,
volume 1954, 2000.

20. Mary Sheeran and Gunnar St̊almarck. A tutorial on St̊almarck’s proof procedure for
propositional logic. In G. Gopalakrishnan and P. Windley, editors, Proceedings 2nd
Intl. Conf. on Formal Methods in Computer-Aided Design, FMCAD’98, Palo Alto,
CA, USA, 4–6 Nov 1998, volume 1522, pages 82–99, Berlin, 1998. Springer-Verlag.

21. Esterel Technologies. Scade suite do-178b qualified code generator. http://www.
esterel-technologies.com/products/scade-suite/do-178b-code-generation.
html.

22. W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl. Fault Tree Handbook.
U. S. Nuclear Regulatory Commission, NUREG-0492, Washington DC, 1981.

Decreasing Maintenance Costs by Introducing

Formal Analysis of Real-Time Behavior in
Industrial Settings

Anders Wall1, Johan Andersson2, and Christer Norström2

1 ABB AB, Corporate Research, Forskargränd, Väster̊as, Sweden
anders.wall@se.abb.com

2 Department of Computer Science and Engineering, Mälardalen University,
Box 883, Väster̊as, Sweden

{johan.x.andersson, christer.norstrom}@mdh.se

Abstract. A common problem with long-lived large industrial software
systems such as telecom and industrial automation systems is the increas-
ing complexity and the lack of formal models enabling efficient analyses
of critical properties. New features are added or changed during the sys-
tem life cycle and it becomes harder and harder to predict the impact of
maintenance operations such as adding new features or fixing bugs.

We present a framework for introducing analyzability in a late phase
of the system’s life cycle. The framework is based on the general idea of
introducing a probabilistic formal model that is analyzable with respect
to the system properties in focus, timing and usage of logical resources.
The analyses are based on simulations. Traditional analysis method falls
short due to a too limited modelling language or problems to scale up to
real industrial systems.

This method can be used for predicting the impact caused by e.g.
adding a new feature or other changes to the system. This enables the
system developers to identify potential problems with their design at an
early stage and thus decreasing the maintenance cost.

The framework primarily targets large industrial real-time systems,
but it is applicable on a wide range of software system where complexity
is an issue. This paper presents the general ideas of the framework, how
to construct, validate, and use this type of models, and how the industry
can benefit from this. The paper also present a set of tools developed to
support the framework and our experiences from deploying parts of the
framework at a company.

1 Introduction

Large industrial software systems evolve as new features are being added. This
is necessary for the companies in order to be competitive. However, this evolu-
tion typically causes the software architecture to degrade, leading to increased
maintenance costs. Such systems, e.g. process control systems, industrial robot
control systems, automotive systems and telecommunication systems, have typi-
cally been in operation for quite many years and have evolved considerably since

T. Margaria and B. Steffen (Eds.): ISoLA 2004, LNCS 4313, pp. 130–145, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Decreasing Maintenance Costs by Introducing Formal Analysis 131

their first release and are today maintained by a staff where most of the people
were not involved in the initial design of the system. These systems typically
lack a formal model enabling analysis of different system properties.

The architectural degradation is a result of maintenance operations (e.g. new
features and bug fixes) performed in a less than optimal manner due to e.g. time
pressure, wrong competence, or insufficient documentation. As a result of these
maintenance operations, not only the size but also the complexity of the system
increases as new dependencies are introduced and architectural guidelines are
broken. Eventually it becomes hard to predict the impact a certain maintenance
operation will have on the system’s behaviour. This low system understandability
forces the developers to rely on extensive testing, which is time consuming, costly
and usually misses a lot of bugs. The software systems we are studying have real-
time requirements, which mean that it is of vital importance that the system
is analyzable with respect to timing related properties, such as response times.
However, bugs related to concurrency and timing are hard to find by testing [1],
as they are hard to reproduce.

By introducing analyzability with respect to properties of interest, the under-
standability of the system can be increased. If it is possible to predict the impact
of a maintenance operation, it can help system architects making the right design
decisions. This leads to a decreased maintenance cost and the life cycle of the
system is lengthened.

The work presented in this paper focuses on a model-based approach for
increasing the understandability and analysability with respect to timing and
utilization of logical resources. A model is constructed, describing the timing
and behaviour of the system, based on the source code, documentation and sta-
tistical information measured on the system. This model can be used for impact
analysis, i.e. predicting the impact a change will have on the runtime behaviour
of the system. We refer to the general method as the ART Framework. This
implementation of the framework is based on the ART-ML modelling language
[2]. An ART-ML model is intended to be analysed using simulation. An initial
case-study in presented in [3], where we used the modelling language and a sim-
ulator is used in order to analyse timing properties of an industrial system. The
case-study showed the feasiblity of using the modelling language for this purpose,
but also showed that analysing the simulation output required tool support. We
therefore proposed the Probabilistic Property Language (PPL) in [4]. In this
paper we present tools supporting PPL.

Existing work related to simulation based analysis of timing behaviour is
given in [5,6]. Analytical methods for probabilistic analysis of timing behaviour
is given in [7]. However, none of them fulfils our requirements completely, i.e.
a rich and probabilistic modelling language and analyses scalable to large and
complex systems.

Our contribution in this paper is a set of tools developed to support the
ART Framework, how the tools can be used for impact analysis and regression
analysis, and how ART-ML models can be validated. We also present how a
company can benefit from using the ART Framework and our experiences from

132 A. Wall, J. Andersson, and C. Norström

introducing parts of the framework at ABB Robotics in Sweden, one of the
world’s largest producers of industrial robots and robot control systems.

The paper is organized as follows: In Section 2 the design rationales behind
the framework is discussed and in Section 3, we give a brief presentation of the
ART Framework, including the modelling language ART-ML and the property
specification language PPL. Further, in Section 4, we discuss the important topic
of validating models. Section 5 describe the tools we have developed to support
this framework. Section 6, present some of the the experiences we got from using
the ART Framework in an industrial setting. Finally, the paper is concluded in
Section 7.

2 Design Rationales

There exist many analytical methods for modelling and analysis of a real-time
system’s temporal behaviour [8,9]. However, the analytical models and analyses
found in conventional scheduling theories are often too simple and therefore a
real system cannot always be modelled and analyzed using such methods. The
models used in those methods are not expressive enough in order to capture
the behaviour of large and complex systems. There is no possibility of specify-
ing dependencies between tasks and the models only allow worst-case execution
times to be specified. Moreover, the analyses only cover deadline properties, i.e.
whether or not every deadline is violated. In many real systems the temporal
requirements are not only expressed in terms of deadlines, for instance there can
be requirements on message queues such as starvation properties. Such require-
ments can not easily be verified with the analytical methods.

On the other extreme we find model-checking methods with rich modelling
languages such as timed automata [10,11]. Timed automata allow modelling of
temporal behaviour as well as functional behaviour. By using synchronization
channels we can model dependencies between tasks in the system. However,
model-checking does not scale properly to larger systems due to the state-space
explosion which makes such an approach useless in a realistic setting.

Simulation is better from that point of view. Using simulation, rich modelling
languages can be used to construct very realistic models, using e.g. realistic
distributions of execution times. A disadvantage of the simulation approach is
that we can not be confident in finding the worst possible temporal behaviour
through simulation, since the state-space is only partially explored. Therefore,
designers of hard real-time systems and safety-critical systems should not rely on
simulation for analysis of critical properties if safe analysis methods are possible,
such as model checking or scheduability analysis. However, when analysing a
complex, existing system, that has not been designed for analysability, simulation
is often the only alternative.

The design rationale behind the modelling language ART-ML is to provide
a rich, probabilistic modelling language suitable for simulation. It should be
possible to describe the behaviour of tasks, how the tasks synchronize and com-
municate and describe explicit execution times using probability distributions.

Decreasing Maintenance Costs by Introducing Formal Analysis 133

We could have used an existing notation, for instance timed automata, and
extended it with execution time distributions and probabilities. However, we
wanted a modelling language similar to the implementation, in order to facili-
tate the understanding of the model. We believe that software developers that
are not used to formal methods are more likely to use this kind of models.

When designing the ART Framework we basically had one major trade-off
to consider: being able to predict something at the cost of precision. We have
chosen to use simulations as a tool for analysis. Even though a simulation might
miss some situations, it may still point out potential problems and thus guiding
the developers making the right decisions, while analytical methods are often
not even possible to use in practice.

3 The ART Framework

The general idea in the ART Framework is the use of a model for analyzing
the impact on timing and utilization of logical resources caused by maintenance
operations, e.g. changing an existing feature or adding a new feature. It is also
possible to use the tools in this framework to analyse measurements of the system
directly, without using a model.

The core of the ART Framework is a general process (Figure 1) describing how
model is constructed and used. Since the process is general it to be instantiated
using any appropriate modelling and analysis method. The process is intended
to be integrated in the life-cycle process at software development organizations.

We will start with a brief overview of the process and describe its steps in
more details later on in this paper. The process consists of five steps:

1. Construct (or update) a structural model of the system, based on system
documentation and the source code.

2. Populate the structural model with data measured on a running system. This
data is typically probabilities of different behaviours and execution times.

3. Validate the constructed model by comparing predictions made using the
model with observations of the real system. If the model does not capture
the system’s behaviour sufficiently, the first two steps are repeated in order to
construct a better model and the new model is validated. This process should
be repeated until a valid model is achieved. Model validation is discussed in
Section 4.

4. Use the model for prototyping a change to the system, for instance if a new
feature is to be added, the model is used for prototyping the change.

5. Analyse the updated model in order to identify any negative effects on the
overall system behaviour, such as deadline misses or starvation on critical
message queues.

If the impact of the change on the system is unacceptable, the change should
be re-designed. On the other hand, if the results from the analysis are satisfactory
the change can be implemented in the real system. The final step when changing

134 A. Wall, J. Andersson, and C. Norström

Step 1:
Create or update

the structural model

Step 2:
Populate the model

using data measured
on the real system

Step 3:
Check if model is valid

A valid model exists, ready to be used

Step 6:
Go ahead with
implementation

Step 5:
Analyze impact of

alteration
Decide if acceptable.

Step 4:
Add prototype of new
feature/alteration on

the model

A new feature is to be added

Impact not acceptable

Re-design the
feature/alteration

Impact acceptable

Model is valid

Fig. 1. The process of introducing and using a model for impact analysis

the system is to update the model so that it reflects the implementation in the
real system by profiling the system in order to update the estimated execution
times, steps 1-3 in Figure 1.

3.1 Constructing the Model

To construct a structural model of a system is to document the architecture and
behaviour of the system in a notation suitable for analysis, at an appropriate
level of abstraction. The resulting model describes what tasks there are, their
attributes such as scheduling priority and their behaviour with respect to timing
and interaction with other tasks using e.g. message queues and semaphores. To
construct this model requires not only studies of the system documentation and
code, but also to involve system experts throughout the complete process. This
is important in order to select what parts of the system to focus the modelling
effort on, since it is likely that some parts of the system are more critical than
others and thus more interesting to model. Other parts of the system can be
described in a less detailed manner.

Iterative reviewing of the model is necessary in order to avoid misunderstand-
ings, due to e.g. different backgrounds and views of the system. If the system
is large, this step can be tedious, several man months is realistic if the model
engineer is unfamiliar to the system, according to our experiences. An experi-
enced system architect can probably construct this structural model faster, but
since such experts often are very busy, it is likely that the model developer is
a less experienced engineer. In order to simplify the construction of the model,
reverse-engineering tools such as Rigi [12,13] or Understand for C++ [14] can
be used. These tools parse the code and visualize the relations between classes
and files.

Decreasing Maintenance Costs by Introducing Formal Analysis 135

In step 2 of the process described in Figure 1, measurements are made in order
to populate the model with execution times distributions and probabilities. The
runtime behaviour of the system is recorded with respect to task timing, i.e. when
tasks start and finish, how the tasks pre-empt each other, their execution times
and the usage of logical resources such as the number of messages in message
queues. This requires the introduction of software probes.

The output from the profiling is a stream of time-stamped events, where each
event represents the execution of a probe. Typically, the execution of a probe
corresponds to a task-switch or an operation on a logical resource (e.g. message
queue).

Since the type of systems we consider are quite large and are changed often,
we assume that the probes can remain in the system. This way we avoid the
probe effect, since the probes becomes a part of the system, and also facilitates
future measurements. The added probes will have a small effect on the system
performance, less than one per cent, as the amount of probing necessary for
our purposes is quite reasonable. The operating system used, VxWorks, allows
user code to executed on every context switch, so by adding a single probe it is
possible to record all context-switches and also the resulting scheduling status
of the tasks. To record IPC communication requires four probes per task of
intererst. This way we can record what message codes that are sent, i.e. what
commands, but not the arguments. Recording the usage of a logical resource
such as a message queue requires two probes per logical resource of interest. To
register operations on semaphores could be done by adding three probes in the
OS isolation layer.

Before the model is used for makeing predictions, it should be validated, i.e.
compared with the real system in order make sure that the model describes the
system behavior correctlty and in an apporpriate level of abstraction. In Section
4 we present a method for this.

3.2 The Modelling Language ART-ML

The ART-ML language describes a system a set of tasks and mechanisms for
synchronization, where each task has an attributes part and a behaviour part.

The behavioural part of a task is described in an imperative language, C
extended with ART-ML primitives. Both the task’s temporal behaviour and,
to some extent, its functional behaviour is modelled. The modeling primitives
available are scheduling priority and how the task is activated, one-shot, peri-
odically or sporadically. Moreover, ART-ML provides primitives and routines
for sending messages to and receiving messages from message queues, as well as
semaphore operations. The execution time for a block of code is modelled with a
special statement that consumes time, execute. The execute-statement can also
be used for modelling sections of code from the real system by their execution
time only. Execution time is specified as a discrete probabilistic distribution in
ART-ML.

136 A. Wall, J. Andersson, and C. Norström

An example of a task in ART-ML is:

TASK SENSOR
TASK_TYPE: PERIODIC
PERIOD: 2000
PRIORITY: 1

BEHAVIOR:
execute ((30, 200), (30, 250), (40, 300));
sendMessage(CTRLDATAQ, MSG_A, NO_WAIT);
chance(20){

execute ((60, 200), (40, 230));
sendMessage(CTRLCMDQ, MSG_B, FOREVER);

}
END

The chance statement in ART-ML provides probabilistic selections, i.e. a non-
deterministic selections based on probability. Chance express the probability of
a particular selection. A chance statement can be used for mimicking behav-
iours observed in measurements of the real system, where the exact cause is not
included in the model.

A message queue is a FIFO buffer storing messages. The message queue decla-
ration contains the name and the size of the message queue. A message is sent to
a message queue using the sendMessage and a message is read from a message
queue using the recvMessage.

An ART-ML semaphore provides a mutual exclusion mechanism between
tasks and conforms to the concept of the classic binary semaphores as pro-
posed by Djikstra. A semaphore is locked using the sem wait and released using
sem post routine.

3.3 Analysis of System Properties Using PPL

The analysis method decides what properties that can be analyzed and also
affects the confidence assessment of the result. The main focus of the ART
Framework is to support analysis of probabilistic system properties related to
timing and usage of logical resources. For this purpose we have developed a
property language called Probabilistic Property Language (PPL). This language
was first proposed in [4]. We have recently implemented a tool for evaluating PPL
queries, described in Section 5.3.

The analyses of system properties in our implementation of the ART Frame-
work are based on trace of the dynamic behaviour, either from a real system
implementation or from a simulation based on a ART-ML model. Based on the
recording we evaluate the system properties specified in PPL.

System properties related to deadlines is a requirement on response times,
either related to a particular task or features involving several tasks, i.e. end-to-
end response time. A deadline property can be formulated as hard, or as a soft
deadline. An example of a formulation of a soft deadline is that at least 90 % of

Decreasing Maintenance Costs by Introducing Formal Analysis 137

the response times of the instances of a task are less than a specified deadline.
In PPL, this property is formulated as follows:

P(TaskX.response < 1200) >= 0.9

Another property of interest could be the separation in time between instances
of a task. The following PPL query checks if two consecutive instances of a task
can be separated in time with less than 1000 time units.

P(TaskX(i+1).start - TaskX(i).end >= 1000) = 1

A PPL query may contain an unbounded variable. If replacing a constant
value with an unbounded variable, the PPL tool calculates for what values the
query result is true. The following PPL query finds the tightest deadline D that
TaskX meets with a probability of at least 0.9.

P(TaskX.response < D) = 0.9

Resource usage properties are those addressing limited logical resources of a
system such as fixed size message buffers and dynamic memory allocation. When
analyzing such properties, the typical concern is to avoid ”running out” of the
critical resource. An example is the invariant that a message queue is always
non-empty. In PPL, this is formulated as follows:

P(*.probe21 > 0) = 1

In this query above, it is assumed that the number of messages in the criti-
cal message queue is monitored using probe 21. The asterisk specifies that the
condition should hold at all times. If a task name is specified instead, it means
that the condition should hold when instances of that task starts.

3.4 Uses of the ART Framework

The ART Framework was initially developed for impact analysis, to predict the
impact on timing and resource usage caused by a change. However, we discovered
another use of the ART Framework, regression analysis, to analyse the current
implementation and compare with previous versions. In this section these uses
are described.

Impact Analysis. If a model has been constructed as described in Section 3.1
it can be used for predicting the impact an maintenance operation will have on
the runtime behaviour of the system. The change is prototyped in the model and
simulations of the updated model are made, generating execution traces. These
are analyzed (as described in Section 3.3) in order to evaluate important system
properties. This analysis can, in an early phase, indicate if there are potential
problems associated with the change that are related to timing and usage of
logical resources.

138 A. Wall, J. Andersson, and C. Norström

If this is the case, the designers should change their design in order to con-
sume fewer resources. Since the change is not implemented yet, this means in
practice to impose a resource budget on the implementer, specifying for instance
a maximum allowed execution time.

If the impact of the change is acceptable, and is implemented, the model
should be updated in order to reflect the implementation. This corresponds to
step one trough three in the process shown in Figure 1, i.e. updating the model
structure, profiling and validation.

The main problem with impact analysis is how to validate models. This is
however not a problem unique for our approach, any formal analysis based on
a model has this problem, if the model has been re-engineered from an existing
system. In this paper we have presented a method for model validation (see
Section 4), and in future work we intend to investigate other complementary
methods.

Regression Analysis. Another use of the framework is regression analysis,
i.e. to compare properties of the current release of the system with respect to
certain invariants and with previous versions of the system. This is very close to
regression testing, but instead of testing the functional behaviour, timing and
resource usage are analyzed. It is also possible to compare the analysis result
with earlier versions of the system. In this way, it is possible to study how
the evolution of the system has affected the properties of interest. It might be
possible to identify trends in system properties that could cause problems in
future releases. If a model has been developed, the impact analysis can be used
in order to predict how an extrapolation of a trend will affect the system.

In order to use regression analysis in a development organization, there is
an initial effort of specifying the properties of interest, formulate them as PPL
queries, define comparison rules and instrument the system with the appropriate
software probes. The setup of the system should be specified in a document,
in order to allow measurements to be reproduced. It is possible that different
properties require different system setups, in that case multiple measurements
of the system is necessary.

After this initial work, performing a regression analysis is straightforward and
can be performed as one of many test-cases by a system tester, without deeper
system understanding or programming knowledge. Measurements are made ac-
cording to the documents initially produced. This results in execution traces,
which are analyzed and compared with earlier releases, using a highly automated
tool. Based on the comparison rules, the tool decides if there are alarming differ-
ences and informs the user of the outcome. A tool supporting this is presented
in Section 5.3.

We are working on this approach in tight cooperation with ABB Robotics
where we intend to introduce regression analysis. We have already integrated our
recording functionality in their robot control system, which allows them to use
our tools. The overall reaction among key persons at the company has been very
positive. Before the method can be fully utilized at ABB Robotics, the relevant
properties and the system setups used for the measurements must be specified.

Decreasing Maintenance Costs by Introducing Formal Analysis 139

4 Validation of Models

Validating a model is basically the activity of comparing the predictions from
the model with observations of the real system. However, a direct comparison is
not feasible, since the model is a probabilistic abstraction of the system. Instead,
we compare the model and the system based on a set of properties, comparison
properties. The method presented in Section 3.3 is used in order to evaluate
these comparison properties, with respect to both the predictions based on the
model and measurements of the real runtime system. If the predicted values
of the comparison properties match the observations from the real system, the
model is observable property equivalent to the real system. A typical comparison
property can be the average response time of a task. It is affected by many
factors and characterizes the temporal behaviour of the system.

Selecting the correct comparison properties is important in order to get a
valid comparison. Moreover, as many system properties as practically possible
should be included in the set of comparison properties in order to get high
confidence in the comparison. The selected system properties should not only be
relevant, but also be of different types in order to compare a variety of aspects
of a model. Other types of comparison properties could be related to e.g. the
number of messages in message queues (min, max, average) or pattern in the
task scheduling (inter-arrival times, precedence, pre-emption).

Even if the model gives accurate predictions, there is another issue to consider,
the model robustness. If the model is not robust, the model might become invalid
as the system evolves, even if the corresponding updates are made on the model.
Typically, a too abstract model tends to be non-robust, since it might not model
dependencies between tasks that allow the impact of a change to propagate.
Hence, it may require adding more details to the model in order to keep it valid
and consistent with the implementation. If a model is robust, it implies that the
relevant behaviours and semantic relations are indeed captured by the model at
an appropriate level of abstraction.

4.1 Model Robustness

The robustness of a model can be analyzed using a sensitivity analysis. The ba-
sic idea is to test different probable alterations and verify that they affect the
behaviour predicted by the model in the same way as they affect the observed
behaviour of the system. Performing a sensitivity analysis is typically done after
major changes of the model, in the validation step of the process. The process
of performing sensitivity analysis is depicted in Figure 2. First a set of change
scenarios has to be elicitated. The change scenarios should be representative
for the probable changes that the system may undergo. Typical examples of
change scenarios are to change the execution times of a task, to introduce new
types of messages on already existing communication channels or change the
rate sending messages. The change scenario elicitation requires, just as develop-
ing scenarios for architectural analysis, experienced engineers that can perform
educated guesses about relevant and probable changes.

140 A. Wall, J. Andersson, and C. Norström

Comparison
M1 – S1

System S3

Comparison
M2 - S2

System S2

Comparison
M3 - S3

System S1

+

Change
Scenario 1

Change
Scenario 2

Change
Scenario 3

System S0

+

+

Model M3

Model M2

Model M1

+

Model M0 +

+

Fig. 2. The Sensitivity Analysis

The next step is to construct a set of system variants S = (S1, ..., Sn) and
a set of corresponding models M = (M1, ..., Mn). The system variants in S are
versions of the original system, S0, where n different changes have been made
corresponding to the n different change scenarios. The model variants in M are
constructed in a similar way, by introducing the corresponding changes in the
initial model M0. Note that these changes only need to reflect the impact on
the temporal behaviour and resource usage caused by the change scenarios, they
do not have to be complete functional implementations. Each model variant is
then compared with its corresponding system variant by investigating if they
are equivalent as described in Section 3.3. If all variants are observable property
equivalent, including the original model and system, we say that the model is
robust.

5 Tools in the ART Framework

This section presents three tools within the ART Framework, supporting the
process described in Section 3 (See [15] for a more detailed description of the
tools).

– An ART-ML simulator, used to produce execution traces based on an ART-
ML model.

– The Tracealyzer, a tool for visualizing the contents of execution traces and
also allows PPL queries to be evaluated with respect to execution trace.

– The Property Evaluation Tool, PET, a tool for analysis and comparison of
execution traces.

Decreasing Maintenance Costs by Introducing Formal Analysis 141

5.1 The ART-ML Simulator

The ART-ML Simulator has a graphical front-end with an integrated model
editor, making it easy to use. This is not a simulator in the traditional sense, i.e.
a general simulator application reading models as input. Instead, when the user
clicks on the simulate-button, it translates the ART-ML model into ANSI C,
compiles it using a standard C-compiler and links it with an ART-ML library.
This results in an executable file, containing a synthesis of the ART-ML model.
The synthesized model is executed for the specified duration, which produces an
execution trace.

5.2 The Tracealyzer Tool

The Tracealyzer has two main features, visualization of an execution trace and a
PPL terminal, a front-end for the PPL analysis tool. The execution trace is pre-
sented graphically. Tasks and generic probes are presented in parallel, allowing
correlation between the task scheduling and the task behaviour. It is possible to
navigate in the trace by using the mouse and also to zoom in and out and to
search for task instances or probe observations with different characteristics. If
the user clicks on a task instance, information about it is presented, such as the
execution time and response time of the instance and the average execution and
response times for the task. If more task statistics are desired, it is possible to
generate a report, containing a lot of information about all tasks.

It is also possible to save a list of the task instances to a text file. This way, the
data can be imported into e.g. Excel and visualized in other ways than the ones
provided by the Tracealyzer. Apart from visualizing the data in an execution
trace, the Tracealyzer also contains a PPL terminal. It is basically a front-end
for the PPL analysis engine. The terminal contains two fields, one input where
PPL queries can be typed and one output where the result is presented.

5.3 Property Evaluation Tool

The Property Evaluation Tool, PET, is a tool for analysing and comparing
execution traces with respect to different system properties, formulated in PPL
(described in Section 3.3). The operation of PET is rather simple. The user
selects a file containing a predefined set of system properties, formulated as PPL
queries. The file can also contain a comparison rule for each property, specifying
what results that is acceptable and what is not. The user then only has to select
the execution trace(s) to analyse.

If desired, two execution traces can be specified, but it is also possible to
analyse a single trace. Specifying a second execution trace allows the tool to do
an automatic comparison of the results using the comparison rules. When the
user clicks on the analyse-button the properties are evaluated with respect to the
trace(s) and the results are presented. If two traces are specified, the properties
with comparison rules are compared automatically. Any properties where the
rule has been broken are pointed out.

142 A. Wall, J. Andersson, and C. Norström

Fig. 3. The Tracealyzer Tool

The application has three uses: impact analysis, regression analysis and model
validation. In the impact analysis case, execution traces from simulation of two
models are compared. One of the models is considered valid and used as reference.
The other model contains a prototype of a new feature or other changes. By
comparing these traces, the impact of the new feature can be analyzed.

When used for model validation, a trace from simulation is compared with a
trace measured from the real system. This way, it is possible to gain confidence
in the model validity.

In the regression analysis case, no data from simulation of models are used.
Instead, execution traces measured from different versions of the system are
analyzed and compared, in order to identify trends and alarming differences,
which might be a result of undesired behavior in the system.

6 Benefits for Industry

If impact analysis can be performed when designing a new feature or other vast
changes in the system, bad design decisions can be avoided. The designer of the
feature can try alternative designs on a model and predict their impact on the

Decreasing Maintenance Costs by Introducing Formal Analysis 143

system. This is likely to decrease maintenance costs since problems with timing
and resource usage can be identified before implementation. Consequently, the
time for identifying errors related to timing in late testing phases is reduced
which decreases the cost for maintenance. This also leads to better system reli-
ability.

Regression analysis and trend identification can point out undesired behaviour
in the system that reflects in the system properties of interest, for instance
execution times. It can also be used for performance analysis, by pointing out
bottlenecks in the system. Information about trends in system properties can
be used to plan ahead for hardware upgrades in the product which also is an
important maintenance activity. If a trend in a property has been identified,
impact analysis can be used to predict how the system will behave if a trend
continues, for instance if a certain execution time keeps increasing as the system
evolves.

The graphical visualization of execution traces, provided by the Tracealyzer
tool is, according to our experiences, an effective way of increasing the under-
standability of the system. When the tool was introduced to developers and ar-
chitects at ABB Robotics, showing them execution traces from the latest version
of their system, we got immediate reactions on details and suspicious behaviours
in the execution trace. We provided them with a new view of the run-time be-
haviour, increasing the understandability and facilitating debugging activities.

The results we have gotten so far from using the ART Framework at ABB
Robotics indicates that maintenance costs can be reduced, as it enables impact
analysis, regression analysis and significantly increases the system understand-
ability. Even though the deployment of the framework is in an initial phase it has
already pinpointed anomalies in the timing behaviour that were not previously
known. Based on discussions with system architects, we believe that by deploy-
ing regression analysis we can reduce maintenance costs at ABB Robotics. As
mentioned, we are working on introducing regression analysis in the company
and later, when this has been used for a while, we plan to investigate the actual
impact on maintenance costs.

We believe that introducing impact analysis could further reduce maintenance
costs, as it helps system designers taking the right design decisions. Further
research is however necessary in order to validate this approach.

7 Conclusions

In this paper we have briefly presented the ART Framework; the general ideas,
the languages ART-ML and PPL. We have presented the three tools developed
for this framework and an approach for validating ART-ML models. We have
presented how the framework can be used for impact analysis, regression analysis
and how the industry can benefit from these uses of the ART Framework. We
have also presented our experiences from deploying parts of the framework in
a development organisation, which strengthen our hypothesis that maintenance
costs can be cut by introducing the methods proposed in the ART Framework.

144 A. Wall, J. Andersson, and C. Norström

We believe that this approach is very useful for its purpose, analysis of prop-
erties related to timing and resource utilization, targeting complex real- time
systems. However, there is work remaining before we can validate this approach.

One problem with the approach described in this paper is the error-prone work
of constructing the model. Instead of manually constructing the whole structural
model, tools could be developed that mechanically generate at least parts of it,
based on either a static analysis of the code, dynamic analysis of the runtime
behaviour or a hybrid approach. This is part of our future work.

Further we intend to perform two case studies on the two uses of the ART
Framework. In the first case study, we plan to further investigate the benefits
and problems associated with deployment of regression analysis. We also intend
to do a continuation of the case study on impact analysis, presented in [2], using
a more advanced model and the tools presented in this paper. Later on, when
this framework has been in use for some time, we plan to investigate how the
maintenace cost at ABB Robotics have changed, by analysing the company’s
fault report database.

References

1. Schutz, W.: On the testability of distributed real-time systems. In: Proceedings of
the 10th Tenth Symposium on Reliable Distributed Systems, (IEEE) 52–61

2. Wall, A., Andersson, J., Neander, J., Norström, C., Lembke, M.: Introducing
Temporal Analyzability Late in the Lifecycle of Complex Real-Time Systems. In:
Proceedings International Conferance on Real-Time Computing Systems and Ap-
plications. (2003)

3. Wall, A.: Architectural Modeling and Analysis of Complex Real-Time Systems.
PhD thesis, Mälardalen University (2003)

4. Wall, A., Andersson, J., Norström, C.: Probabilistic Simulation-based Analysis of
Complex Real-Time Systems. In: Proceedings 6th IEEE International Symposium
on Object-oriented Real-time distributed Computing. (2003)

5. Audsly, N.C., Burns, A., Richardson, M.F., Wellings, A.J.: Stress: A simulator for
hard real-time systems. Software-Practice and Experience 24 (1994) 543–564

6. Storch, M., Liu, J.S.: DRTSS: a simulation framework for complex real-time sys-
tems. In: Proceedings of the 2nd IEEE Real-Time Technology and Applications
Symposium (RTAS ’96), Dept. of Comput. Sci., Illinois Univ., Urbana, IL, USA
(1996)

7. Manolache, S., Eles, P., Peng, Z.: Memory and Time-efficient Schedulability Analy-
sis of Task Sets with Stochastic Execution Time. In: Proceedings of the 13nd
Euromicro Conference on Real-Time Systems, Department of Computer and In-
formation Science, Linköping University, Sweden (2001)

8. Audsley, N.C., Burns, A., Davis, R.I., Tindell, K.W., , Wellings, A.J.: Fixed priority
pre-emptive scheduling: An historical perspective. Real-Time Systems Journal 8
(1995) 173–198

9. Liu, C.L., Layland, J.W.: Scheduling Algorithms for Multiprogramming in hard-
real-time environment. Journal of the Association for Computing Machinery 20
(1973) 46–61

10. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126 (1994)

Decreasing Maintenance Costs by Introducing Formal Analysis 145

11. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a Nutshell. Springer International
Journal of Software Tools for Technology Transfer 1 (1997)

12. Muller, H., Klashinsky, K.: Rigi: a system for programming-in-the-large. In: Pro-
ceedings of the 10th International Conference on Software Engineering. (1988)

13. Rigi Group: (Rigi Group Home Page) http://www.rigi.csc.uvic.ca/index.html.
14. Toolworks, S.: (Scientific toolworks home page) http://www.scitools.com/.
15. Andersson, J.: Modeling the Temporal Behavior of Complex Embedded Systems

- A Reverse Engineering Approach. ISBN 91-88834-71-9. Mälardalen University
Press (2005)

Static Timing Analysis of Real-Time Operating

System Code

Daniel Sandell, Andreas Ermedahl, Jan Gustafsson, and Bj rn Lisper

Dept. of Computer Science and Electronics, Mälardalen University
Box 883, S-721 23 Väster s, Sweden

Abstract. Methods for Worst-Case Execution Time (WCET) analysis
have been known for some time, and recently commercial tools have
emerged. However, the technique has so far not been much used to anal-
yse real production codes. Here, we present a case study where static
WCET analysis was used to find upper time bounds for time-critical
regions in a commercial real-time operating system. The purpose was
not primarily to test the accuracy of the estimates, but rather to in-
vestigate the practical difficulties that arise when applying the current
WCET analysis methods to this particular kind of code. In particular,
we were interested in how labor-intense the analysis becomes, measured
by the number of annotations to explicitly constrain the program flow
which is necessary to perform the analysis. We also make some qualita-
tive observations regarding what a WCET analysis method would need
in order to perform a both convenient and tight analysis of typical op-
erating systems code. In a second set of experiments, we analyzed some
standard WCET benchmark codes compiled with different levels of opti-
mization. The purpose of this study was to see how the different compiler
optimizations affected the precision of the analysis, and again whether
it affected the level of user intervention necessary to obtain an accurate
WCET estimate.

1 Introduction

A Worst-Case Execution Time (WCET) analysis finds an upper bound to the
worst possible execution time of a computer program. Reliable WCET estimates
are a key component when designing and verifying real-time systems, especially
when real-time systems are used to control safety-critical systems like vehicles,
military equipment and industrial power plants. WCET estimates are needed
in hard real-time systems development to perform scheduling and schedulability
analysis, to determine whether performance goals are met for periodic tasks,
and to check that interrupts have sufficiently short reaction times [1]. However,
WCET analysis has a much broader application domain; in any product de-
velopment where timeliness is important, WCET analysis is a natural tool to
apply.

Any WCET analysis must deal with the fact that a computer program typ-
ically has no fixed execution time. Variations in the execution time occur due
to the characteristics of the software, as well as of the computer upon which

T. Margaria and B. Steffen (Eds.): ISoLA 2004, LNCS 4313, pp. 146–160, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

ö

å

Static Timing Analysis of Real-Time Operating System Code 147

the program is run. Thus, both the properties of the software and the hardware
must be considered in order to understand and predict the WCET of a program.

The traditional way to determine the timing of a program is by measurements,
also known as dynamic timing analysis. A wide variety of measurement tools are
employed in industry, including emulators, logic analyzers, oscilloscopes, and
software profiling tools [2,3]. This is labor-intensive and error-prone work. Even
worse, it cannot guarantee that the true WCET has been found, since in general
it is not possible to perform exhaustive testing.

Static timing analyses estimate the WCET of a program without actually
running it. The analyses avoid the need to run the program by simultaneously
considering the effects of all possible inputs, including possible system states,
together with the program’s interaction with the hardware. The analyses rely
on mathematical models of the software and hardware involved. Given that the
models are accurate enough, the result is a safe timing estimate that is greater
than or equal to the actual WCET.

Recently, commercial WCET tools such as aiT [4] and Bound-T [5], have
reached the market. However, practical experience of WCET analysis in industry
has so far been rather limited, see Section 2.

In this case study we report from experiences when using a static WCET
analysis tool to analyze code from the Enea OSE Real-Time operating system
[6]. This is a commercial operating system, used in applications such as mobile
phones and aircrafts, and thus an example of real production code.

Real-time operating systems are important to analyze with respect to timing
properties, since they often are used in time-critical applications. Tasks with hard
real-time constraints may make operating system calls. If no good WCET bound
for the called code is known, then it is not possible to find a good WCET bound
for the calling task either. Furthermore, OS services such as task switching must
have good WCET bounds in a real-time system, since they also affect the timing
properties of the application code. Finally, operating systems contain disable
interrupt regions (or DI regions for short), where the interrupts are turned off,
e.g., to provide a critical section where some shared resource is protected. The
WCETs of such regions need also to be bounded, since their execution can delay
higher priority tasks.

In our study, we analyzed some selected system calls and DI regions. We were
somewhat interested in the precision of the analysis, but more in issues like
how difficult it is to analyze typical operating systems code. WCET analysis
cannot be completely automatic, (or we would have solved the halting problem),
and manual user directives are typically needed to provide information that the
analysis is not able to derive automatically. These directives provide problems:
they can be erroneous, in which case the analysis might give an underestimation
of the WCET, and providing the proper directives may be laborious and require
a deep understanding of the code. This means that WCET analysis methods
must be tuned to handle certain important classes of code with a minimum
of needed user intervention. Our hypothesis was that operating systems code

148 D. Sandell et al.

provides a particularly challenging class in this regard, and is much different in
character than, for instance, signal processing code.

The second part of the study concerns how compiler optimizations affect the
manual labor needed to perform an accurate WCET analysis. Optimizations
may create a more complex and unstructured program flow in the resulting code,
which may make it harder to provide proper annotations for constraining the
program flow. In addition, we studied how compiler optimizations for speed and
size, respectively, affected the WCET itself. This is also interesting: for instance,
it is not evident that an optimization for average speed will give a lower WCET.
For this part of the study we were not able to use the OSE operating system
code, the reason being that this code, due to its low-level nature, only compiles
with a small set of compilers with certain combinations of flags set. Instead, we
used a set of standard WCET benchmarks.

The rest of this paper is organized as follows. In Section 2, we give a brief
introduction to WCET analysis and related work in the area. In Section 3 the aiT
WCET tool is described. Section 4 gives a short description of the OSE operating
system. Section 5 presents the target processor for the analysis, including the
associated development environment. Section 6 describes the experimental setup
and the obtained results. Finally, in Section 7, we draw some conclusions and
give ideas for further research.

2 WCET Analysis Overview and Related Work

Static WCET analysis is usually divided into three phases: a fairly machine-
independent flow analysis of the code, where information about the possible
program execution paths is derived, a low-level analysis where the execution time
for atomic parts of the code is decided from a performance model for the target
architecture, and a final calculation phase where flow and timing information
derived in the previous phases are combined to derive a WCET estimate.

The purpose of the flow analysis phase is to extract the dynamic behaviour
of the program. This includes information on which functions get called, how
many times loops iterate, if there are dependencies between if-statements, etc.
Since the flow analysis does not know the execution path which corresponds to
the longest execution time, the information must be a safe (over)approximation
including all possible program executions. The information can be obtained by
manual annotations (integrated in the programming language [7] or provided
separately [8,9]), or by automatic flow analysis methods [10,11,12]. The flow
analysis is usually called high-level analysis, since it is often done on the source
code, but it can equally well be done on intermediate or machine code level.

The purpose of low-level analysis is to determine the timing behaviour of
instructions given the architectural features of the target system. For modern
processors it is especially important to study the effects of various performance
enhancing features, like caches, branch predictors and pipelines [13,14,15,16].

The purpose of the calculation phase is to calculate the WCET estimate for
a program, combining the flow and timing information derived in the previous

Static Timing Analysis of Real-Time Operating System Code 149

phases. A calculation method frequently used is IPET (Implicit Path Enumera-
tion Technique), using arithmetical constraints to model the program flow and
low-level execution times [8,17,12]. IPET calculations normally rely on integer
linear programming to solve the generated constraint system.

Studies of WCET analysis of industrial code are not common. There are some
reports on application of commercial WCET tools to analyze code for space
applications [12,18,19], and in aerospace industry [20,21]. The experiences from
some recent case studies are compiled in [22]. One of these case studies concerns
WCET analysis for LIN and CAN communication software in cars [23].

An investigation of industrial embedded code has been done by Engblom [24].
He collected statistics of the number of occurrences of certain code features that
maybe problematic for aWCET analysis, like recursion, unstructured flowgraphs,
function pointers and function pointer calls, data pointers, deeply nested loops,
multiple loop exits, deeply nested decision nests, and non-terminating loops and
functions. In a more recent study [25], industrial code is investigated with respect
to how amenable it is to a syntactical flow analysis, a method which detects certain
loop patterns where iteration count bounds can be immediately given.

Studies of how to perform WCET analysis on operating system kernels are
even more rare. We have done an earlier case study of the OSE operating sys-
tem [26], where a number of DI regions were identified and analyzed. The study
presented here is a followup. The only other work we know in the area is by
Colin and Puaut [27]. They analyse some operating system functions of RTEMS,
a small, open-source real-time kernel.

3 The aiT WCET Tool

The aiT tool is a commercial WCET analysis tool from AbsInt GmbH [4]. aiT anal-
yses executable binaries, and it has support for a number of target architectures
including the ARM7TDMI. aiT performs the following steps in its analysis:
− a reconstruction of the control flow graph from the executable code,
− an analysis to bound loop iterations, based on a combination of an interval-

based abstract interpretation and pattern-matching tuned to the compiler
that generated the analyzed code [28],

− a value analysis to determine the range of values in registers,
− a cache analysis that classifies accesses to main memory w.r.t. hits and misses,

if the processor has a cache,
− a pipeline analysis, where a model of the pipeline behavior is used to determine

the execution time of basic blocks, and finally
− a path analysis where an IPET calculation is made to determine the WCET.
In essence, the aiT WCET analysis conforms to the general scheme presented in
Section 2. Several of the analyses in the chain are based on abstract interpreta-
tion [29], such as the value analysis and the cache analysis [17].

The aiT ARM7 tool analyses executables stored in .ELF format. This format
contains information about the code, like symbol tables, which is used by aiT.
This information is to some extent vendor-specific, meaning in reality that the

150 D. Sandell et al.

Fig. 1. aiT ARM7 WCET Tool Graphical Interface

aiT ARM7 tool can analyze executables from only a limited set of compilers. We
used the ARM compiler, see Section 5, which belongs to this set.

The information present in the .ELF file and the executable itself is typically
not sufficient to yield a good WCET bound for the analyzed code. In particular,
information about program flow, such as bounds to loop iteration counts not
caught by the loop bounds analysis, and knowledge of infeasible paths, has to
be provided by the user. Therefore, aiT supports a set of user annotations to
provide external information to the analysis [9]. Some of the more important
annotations are: loop bounds, maximal recursion depth, dead code, and (static)
values of conditions. The two latter can be used to exclude parts of the code, like
error routines, which one may want to exclude from the WCET analysis even
though their execution is feasible. In addition, there are a number of possible
annotations to specify the control flow of subroutine calls, when needed, and to
provide hardware-related information such as clock rate and address mapping
to different kinds of memories.

Since aiT analyzes the binary code, the annotations have to be given on this
level, which is cumbersome. For some compilers, aiT can use symbol tables to
map annotations given for the source code to the binary level: however, the
user must be aware that the control flow of the code might be different for the
compiled code, which means that annotations valid for the source code might
not be valid for the binary code. In our study, annotations were made on the
binary level.

The larger lower window in Figure 1 illustrates the graphical interface for the
aiT ARM7 WCET tool, including action keys for performing the WCET analysis

Static Timing Analysis of Real-Time Operating System Code 151

and a subwindow with ARM7 assembler code extracted from the .ELF file. The
front window gives some illustrative examples of possible annotations, including
loop bound and dead code annotations.

4 The OSE Operating System

OSE is a real-time operating system, developed by Enea Embedded Technolo-
gies [6]. It is used in embedded system applications such as mobile phones and
aircrafts. OSE is available for a number of target processors, mostly towards the
high-end spectrum of embedded processors. The delta kernel of OSE, which has
been used in this study, is available for ARM, StrongARM, PowerPC, Motorola
68k, and MIPS R3000. The OSE source code is written both in C and assembler.

The OSE kernels are process-based, fully preemptive, and provide priority-
based process scheduling. Processes communicate through messages: messages
are sometimes called signals, and are sent through buffers. Each buffer is iden-
tified by a signal number. Only a small number of system calls are needed to
support most requests: for instance, basic interprocess communication can be
handled by the two system calls send and receive.

In OSE, related processes can share the same memory pool. System calls like
alloc and free buf are used for memory handling by application processes.

Due to the communication and memory pool models, OSE must handle many
shared memory structures. Since the process model is preemptive, the operating
system code must contain quite a few critical sections to keep these structures
consistent during updates. These sections are typically implemented by DI re-
gions. Executing such a DI region can thus cause a temporary priority inversion,
where a higher-priority process is delayed by a lower-priority process. It is there-
fore important to have small WCETs for the DI regions, in order to keep these
delays down.

5 The ARM Board and Development Environment

We selected the ARM7TDMI processor as target architecture since it is widely
used, since OSE is implemented for it, and since there is a version of aiT for it.
This is a 32-bit RISC processor, with an uncached core and a 3-stage pipeline.
Most of the instructions are executed in a single clock cycle.

Interrupts are enabled (EI) and disabled (DI) by setting some bits in a status
register. This is done with a move-register-to-status-register instruction. Thus,
an EI or DI will be executed depending on the contents in the source register.

5.1 ARM Development Tools

The ARM development toolkit1 contains an ANSI C compiler, assembler, linker,
ARMulator simulator, and an ARM development board. The C compiler produces
ARM object format or assembly source output. It can be run with a variety of flags,
including different levels of optimization for both space and execution time.
1 We used ARM Developer Suite Version 1.2.

152 D. Sandell et al.

Table 1. Analyzed system calls

system call description
alloc Allocation of memory in a pool

free buf Free allocated memory
receive Receive signal from another process
send Send signal from process to another process

We used the ARMulator in our experiments. The ARMulator is a simulator,
which makes it possible to evaluate the behaviour of a program for a certain ARM
processor without using the actual hardware. The ARMulator model consists of
four main components:
− The ARM processor core model that handles the communication with the

debugger.
− The memory system. It is possible to modify the memory model, for instance

w.r.t. different RAM types and access speeds.
− The coprocessor interface that supports custom coprocessor models.
− The operating system interface, which makes it possible to simulate an oper-

ating system.
It is possible to measure the number of clock cycles used by a program using
the ARMulator. Bus and core related statistics can also be obtained from the
debugger. There is no guarantee that the ARMulator timing model corresponds
exactly with the actual hardware. However, since ARM7TDMI is an uncached
and not very complex core, we expect the ARMulator to be rather cycle accurate.

6 Experimental Setup and Results

We made a series of experiments. First we analyzed a set of OSE system calls,
and a number of DI regions in the OSE operating system, using the aiT tool.
Then we investigated the influence of code optimization on WCET analysis. For
this experiment, we compiled some standard benchmark programs with different
levels of optimization, and performed WCET analyses on the resulting binaries,
again using the aiT tool. For these binaries, we also tried to find the exact
WCET by simulating the longest path with the ARMulator. This was done in
order to estimate the accuracy and safety of the WCET estimates provided by
the static analysis. In all experiments, we used the ARM C compiler, and we
assumed a memory model with zero wait states for both the WCET analysis and
the simulation (i.e., an instruction is executed in same number of clock cycles
no matter where in the memory it is stored). The estimated WCET results and
simulated execution times are given in number of clock cycles.

6.1 Analysis of System Calls

We analyzed the OSE system calls given in Table 1. These calls include error
checks and use advanced memory protection. They are real-time classified system
calls in OSE.

A problem that we soon discovered is that the execution time of these sys-
tem calls depend on many parameters, such as the number of signal buffers, or

Static Timing Analysis of Real-Time Operating System Code 153

Table 2. Description of performed analyses and assumptions made

system call restrictions of the analysis assumptions
alloc(a) Buffers of correct size exist
alloc(b) No buffers of correct size exist No swap out handler is registered
free buf There are two pools in the sys-

tem
receive(a) Receive all signals The signal is first in the queue. No swap out handler is

registered. A 20 bytes signal is copied. No redirection.
receive(b) Receive a signal The signal is at second place in the queue. Max 2

buffers before in the queue. No swap out handler is
registered. A 20 bytes signal is copied. No redirection.

send(a) Send a signal to a process with
higher priority

The call to int mask handler is not analysed. No swap
out handler is registered and the analysis stops before
the interrupt process is called. No redirection.

send(b) Send a signal to a process with
lower priority

No redirection

Table 3. Result of system call analyses

system call funcs instr blocks loops annot WCET
alloc(a) 1 78 15 0 10 127
alloc(b) 9 390 54 0 18 433
free buf 2 100 19 0 15 186

receive(a) 15 531 119 2 29 821
receive(b) 17 609 143 4 33 1469
send(a) 4 281 56 0 32 493
send(b) 5 288 62 0 33 417

maximal message sizes. Assuming a global worst-case scenario, where all these
parameters assume their “worst” values, can give very poor WCET estimates
for actual configurations, where these parameters typically are fixed, and assume
much smaller values. Furthermore, one is often only interested in WCET esti-
mates for the system executing in normal operation. This means that certain
feasible paths, like error handling routines, may not be interesting to analyze.

We dealt with this problem in our experiments by assuming some “typical”
scenarios for parameters affecting the WCET, like the number of buffers (after
discussions with the OSE designers). Furthermore, we excluded typically un-
interesting execution paths, like error handling, from the analysis by manual
annotations, setting conditions to true or false or by explicitly excluding basic
blocks. For alloc, receive and send, we assumed two different scenarios each.
They are denoted by (a) and (b), respectively, in Table 2, which summarizes the
conditions under which the analyses were made.

Table 3 gives the results of the analyses. For each analysed system call, funcs
is the number of analysed routines in the call graph, instr is the total number
of assembler code instructions, and blocks is the number of basic blocks. All
these numbers are for the system calls with the error handling excluded. The
estimated WCET’s are given in column WCET.

The most interesting information in Table 3 is the number of annotations
(annot) needed to perform each WCET analysis. As seen, quite a few anno-
tations are required for each system call analysis. Another observation is that
excluding the error handling yields significantly smaller code to analyze. For in-
stance, send with full error check uses at least 39 routines. This indicates that

154 D. Sandell et al.

�

���

����

����

����

� � � � �
���������	
�

��
�

	
��

��
��

�
�

�	
������

�		�����

Fig. 2. receive WCET scaled with loop iterations

it really is important to identify and exclude execution scenarios that are not
interesting to analyze, even if their execution is feasible.

Some of the analyzed system calls contained loops. Providing upper bounds
for these loops posed a problem since almost all were dependent on dynamic data
structures present in the system. As mentioned in Section 3, aiT performs a loop
bound analysis. According to the aiT developers [28], their loop bound analysis
typically bounds 70-95% of all loops automatically (ARM7 code compiled with
the Texas Instrument ARM compiler). However, the loop bound analysis method
for aiT cannot handle loops that depend on parameters not known at compile-
time, making the recognition rate very low for the OSE system calls.

An illustrating example is a loop appearing in receive. The loop iterates
through an array with signal numbers, searching for a specific signal buffer.
Each iteration of the loop takes 13 clock cycles: thus, each iteration has a limited
impact on the total WCET. However, there are more than 32000 possible signal
numbers. In many system configurations, the actual number of signal numbers
will be statically bound by a much smaller number, and the calculated WCET
will be a huge overestimation if based on the maximal number of signal numbers
allowed by OSE.

Another interesting loop is found in receive(b). The loop iterates through
a queue of buffers, and the number of iterations is bounded by the number
of buffers searched before finding the right one. Unfortunately, the number of
buffers in the system may be hard to know statically since it depends on the
current system state. The time for an iteration was 182 clock cycles and was a
significant part of the total execution time of the system call. In Figure 2 we
have tabulated the total WCET of receive(b) against the number of iterations
performed in the loop. If the loop iterates more than five times, then its total
contribution to the WCET will exceed the contribution of the rest of the executed
code. The WCET for receive(b) in Table 3 was given under the assumption
that at most two buffers were searched before the right buffer was found, which
is correct in a scenario where the system only has two buffers.

The analysis of the system calls was done by the first author, who made the
work as part of his M. Sc. thesis. Thus, he may be considered a typical engineer
who has not yet acquired a lot of experience using WCET analysis tools, and who
is not particularly knowledgeable about the code to be analysed. The analysis
was quite labor-consuming, taking in total a few weeks to perform, even if the
analyzed code in the end became quite small. The main reason for this was that

Static Timing Analysis of Real-Time Operating System Code 155

Table 4. Properties of some example DI regions

DI region instr blocks loops annot WCET
DI92728-EI92752 6 2 0 1 12
DI74156-EI74216 16 4 0 2 29
DI82928-EI83088 28 9 1 6 331

he first tried to correct all the warnings that occurred in the analysis, e.g., set
unresolved branches and loop bounds, before actually understanding what parts
of the code that should be excluded from the analysis. Secondly, he had to rely
on information from the OSE designers to give feasible loop bounds.

We conclude that it is possible to apply static WCET analysis to code with
properties similar to the system calls in OSE Delta kernel. However, it is hard
to fully automate the WCET analysis process on a ’one-click-analysis’ basis.
Instead, much manual intervention, and detailed knowledge of the analyzed code,
is required to perform the analysis. Furthermore, if the obtained WCET values
are to be useful, they must be calculated under the actual conditions for which
the system is expected to run, with stronger bounds on system parameters and
input arguments to system calls.

6.2 Analysis of Disable Interrupt Regions
In this experiment, we analysed 180 DI regions from the OSE operating system.
This is a selection of the DI regions analysed in [26]. Most of the DI regions
analysed were short and not so complex: 132 the regions contained five or less
basic blocks, and only one of the selected regions contained a loop. Consequently,
not so many annotations were needed and most DI regions needed only a few
annotations: 119 of the 180 analyses needed two or less annotations. Figure 3
shows in detail how the number of annotations is distributed. In Table 4 the
properties of three analysed DI regions are given together with their WCETs.

For this kind of code, the annotations were used mostly to restrict the WCET
analysis to the actual program paths possible between the actual EI and DI
operations. This is not always a trivial task, since DI regions may span function
boundaries. Two different types of annotations were used for this. The condition
annotation was used to follow the paths in the basic block graph, and the dead
code annotation was used to make sure that the analysis would stop at the
correct instruction. Only one loop, which is looking for any changes in a signal
buffer, was found. It could not have its iteration count bounded automatically
by aiT. Therefore, we manually set the loop bound to 10 to be able to extract a
WCET estimate.

We conclude that DI regions are more suitable targets than the system calls
for automatic WCET analysis. However, for some DI regions expert knowledge
of the code is required to provide correct annotations, making it hard to make
the analysis fully automatic.

6.3 WCET Analysis of Optimized Code

Compilers for embedded system can optimize for both speed and size. In many
applications, such optimizations are important. Thus, it is interesting to study
how these optimizations affect WCET analysis of the resulting code.

156 D. Sandell et al.

�

��

��

��

��

��

��

� � � � � � � � � � �� �� �� ��
���

	����	
�����
�����

��
�

�
��

��

Fig. 3. Number of manual annotations per DI region

Table 5. Benchmarks for evaluating WCET and compiler optimizations

program description instr blocks loops
bs Binary search for the array of 15 integer elements 28 10 1
crc Cyclic redundancy check computation on 40 bytes of data 104 28 3

expint Series expansion for computing an exponential integral function 50 18 2
isort Insertion sort on a reversed array of size 10 42 7 2

ns Search in a multi-demensional array 51 14 4
select A function to select the nth largest number an array 91 34 4

The benchmarks used in this experiment contain conditional constructs. They
are listed in Table 5 together with their size, numbers of blocks, and number of
loops. The figures are for binary code compiled with the ARM C compiler, with
medium optimisation for space.

Each benchmark was compiled with optimization for size and speed, respec-
tively, and with medium and maximum optimisation levels for both. In Table 6,
the results are given. For each optimization we give the WCET estimate pro-
duced by aiT (aiT), the simulated time obtained from the ARMulator (armu),
the ratio in precent between these (+%), and the number of annotations (ann).
We have also repeated the experiment with a ARM7 C compiler from IAR Sys-
tems with similar results, see [30] for details.

When the benchmarks were highly optimized, the structure of the programs
changed a bit, but in most cases it was not so difficult to find the corresponding
code and make the proper annotations. Changes that occurred were, for instance,
that a function was moved inside the callers body, and the loop control could
be changed to the end of the loop instead of the beginning. The most difficult
changes to handle annotation-wise were when loop fission or loop fusion occurred.

Interestingly, the results indicate that it was not harder to perform an accu-
rate WCET analysis for highly optimized code. Although the WCET estimate
dropped with up to 48% when optimizing for speed, the ratio between WCET
estimate and simulated execution time stayed quite constant. It was somewhat
harder to produce annotations, but not much harder. (The number of annota-
tions even drop some with increasing level of optimization, but this is mainly an
effect of the code size decreasing with increasing levels of optimization.)

Static Timing Analysis of Real-Time Operating System Code 157

Table 6. How compiler optimizations affect WCET

pro- speed – medium speed – high size – medium size – high
gram aiT armu +% ann aiT armu +% ann aiT armu +% ann aiT armu +% ann
bs 100 93 7.5 4 65 60 8.3 2 107 100 7.0 5 65 60 8.3 2
crc 34852 34804 0.1 7 27499 27455 0.2 7 34869 34821 0.1 7 27517 27473 0.2 4

expint 2208 1997 10.6 5 1150 1145 0.4 2 2263 2052 10.3 5 2113 1891 11.7 5
isort 1230 1190 3.4 4 1213 1190 1.9 3 969 962 0.7 4 944 919 2.7 3
ns 8518 8497 0.2 2 7228 7208 0.3 0 8601 8516 1.0 2 8603 8517 1.0 0

select 1357 1349 0.6 16 1333 1306 2.1 13 1428 1401 1.9 17 1362 1295 5.2 12

6.4 Justifying Obtained WCET Estimates

When comparing simulated ARMulator times and calculated aiT WCET esti-
mates it should be noted that both methods rely on software models of the
hardware. Therefore it is hard to say that one timing estimate is more correct
than the other. Engblom [16] identifies several error sources when constructing
hardware timing model, including hardware bugs, manual writing errors, and
simulator implementation errors. Furthermore, for competitive reasons proces-
sor manufactures often keep the internals of their processor cores secret.

To get some justification of the quality of calculated WCET estimates we com-
pared timing estimates from aiT and the ARMulator for a number of benchmarks
(not included here, see [30] for details). The benchmarks contained features like
system calls, loops and branches, but had only one single execution path through
the program. By keeping track of the number of times each basic block was taken
during a simulator run, we were able, by annotations, to provide exact bounds
on the executions of each basic block for the WCET calculation. Thereby, the
resulting timing discrepancies were not due to incorrect flow information, but
only to differences in the hardware timing models.

The experiments showed that the aiT WCET estimates were on average about
5% larger than the times obtained using the ARMulator. For none of the tested
benchmarks aiT gave a WCET lower than the timing produced by the ARMu-
lator. The aiT developers have seen overestimations up to 4% for their ARM7
timing model, compared to measurements with a logic analyzer on a TI TMS470
bond-out chip [28]. We therefore conclude that the timing model of the ARMula-
tor seems to be reasonably exact, or possibly providing slight underestimations
on average. Thus, the WCET overestimations obtained when comparing with
the ARMulator times should be quite similar, or possibly on average slightly
overestimating the WCET overestimations for the real ARM7.

7 Conclusions and Future Work

The results indicate that static WCET analysis is a feasible method for deriving
WCET estimates for real-time operating system code. For all analyzed parts of
the OSE operating system we were able to obtain WCET estimates, including
both system calls and DI regions.

158 D. Sandell et al.

We note however that the static WCET analysis technique is not yet mature
enough to fully automate the timing analysis process on a ’one-click-analysis’
basis. Instead, detailed knowledge of the analyzed code is required and often
manual annotations must be provided.

Clearly, the usefulness of WCET analysis would improve with a higher level
of automation and support from the tool. Especially important should be to
develop advanced flow analysis methods, in particular to find more loop bounds
automatically. For most of the loops analyzed in OSE the loop iteration bounds
analysis of aiT would not produce a bound. Expert knowledge was needed to
do this by hand, and the work was time-consuming and error-prone. Similarly,
better support for easy exclusion of error handling routines from the normal
WCET analysis would be of great value.

Another important conclusion is that absolute WCET bounds are not always
appropriate for real-time operating system code. The WCET often depends on
dynamic system parameters, like the number of signal buffers, whose absolute
upper bounds may be large but which may be much more strongly bounded in
actual configurations or running modes. An absolute WCET bound, covering
all possible situations, may then provide a large overapproximation for that
configuration or running mode.

Therefore, one would like to express the WCET conditionally, given that the
system runs in a certain mode. Modes, or sets of modes, can often be encoded
as value-range constraints on program variables (settings of flags, bounds on
number of processes, etc.). Program flow constraints can also be expressed as
value-range constraints, but on execution count variables. Thus, it seems inter-
esting to develop means to communicate such information to the analysis in
order to constrain the possible program flows for the given mode.

A parametric WCET analysis [31] may also be useful, especially for handling
code like system calls. This type of WCET analysis could express how the WCET
for system calls depends on, e.g., the system state and the input arguments.

Another conclusion is that the constant time often assumed for, e.g., context
switch, in real-time scheduling theory, will be a large overestimation in many
cases. A conditional WCET, in terms of system state and input arguments,
would lead to a much tighter value, and thus a better utilisation of the system.

We have done some additional case studies of WCET analysis for industrial
codes since the case study reported here was performed. The experience from
these case studies largely confirms the conclusions drawn here [22].

Acknowledgements

This work was performed within the ASTEC competence center2, under support
by VINNOVA3. We want to thank AbsInt GmbH [4] for giving us access to the
aiT tool, as well as Enea Embedded Technologies [6] for giving us access to
source code and binaries for the OSE operating system.
2 www.astec.uu.se
3 www.vinnova.se

Static Timing Analysis of Real-Time Operating System Code 159

References

1. Ganssle, J.: Really Real-Time Systems. In: Proc. Embedded Systems Conference
San Fransisco 2001. (2001)

2. Ive, A.: Runtime Performance Evaluation of Embedded Software. Presented at
the 8th Nordic Workshop on Programming Enviroment Research (1998)

3. Stewart, D.B.: Measuring Execution Time and Real-Time Performance. In: Proc.
of the Embedded Systems Conference (ESCSF’2002). (2002)

4. AbsInt: AbsInt company homepage (2005) www.absint.com.
5. : Bound-T tool homepage (2006) www.tidorum.fi/bound-t/.
6. Enea: Enea Embedded Technology homepage (2005) www.enea.com.
7. Kirner, R., Puschner, P.: Transformation of Path Information for WCET Analysis

during Compilation. In: Proc. 13th Euromicro Conference of Real-Time Systems,
(ECRTS’01), IEEE Computer Society Press (2001)

8. Ermedahl, A.: A Modular Tool Architecture for Worst-Case Execution Time Anal-
ysis. PhD thesis, Uppsala University, Dept. of Information Technology, Box 325,
Uppsala, Sweden (2003)

9. Ferdinand, C., Heckmann, R., Theiling, H.: Convenient User Annotations for a
WCET Tool. In: Proc. 3rd International Workshop on Worst-Case Execution Time
Analysis, (WCET’2003). (2003)

10. Gustafsson, J.: Analyzing Execution-Time of Object-Oriented Programs Using
Abstract Interpretation. PhD thesis, Dept. of Information Technology, Uppsala
University (2000)

11. Healy, C., Sjödin, M., Rustagi, V., Whalley, D.: Bounding Loop Iterations for
Timing Analysis. In: Proc. 4th IEEE Real-Time Technology and Applications
Symposium (RTAS’98). (1998)

12. Holsti, N., L̊angbacka, T., Saarinen, S.: Worst-Case Execution-Time Analysis for
Digital Signal Processors. In: Proc. EUSIPCO 2000 Conference (X European Signal
Processing Conference). (2000)

13. Heckmann, R., Langenbach, M., Thesing, S., Wilhelm, R.: The Influence of Proces-
sor Architecture on the Design and the Results of WCET Tools. IEEE Proceedings
on Real-Time Systems (2003)

14. Engblom, J.: Analysis of the Execution Time Unpredictability caused by Dynamic
Branch Prediction. In: Proc. 8th IEEE Real-Time/Embedded Technology and
Applications Symposium (RTAS’03). (2003)

15. Healy, C., Arnold, R., Müller, F., Whalley, D., Harmon, M.: Bounding Pipeline
and Instruction Cache Performance. IEEE Transactions on Computers 48 (1999)

16. Engblom, J.: Processor Pipelines and Static Worst-Case Execution Time Analy-
sis. PhD thesis, Uppsala University, Dept. of Information Technology, Box 337,
Uppsala, Sweden (2002) ISBN 91-554-5228-0.

17. Ferdinand, C., Martin, F., Wilhelm, R.: Applying Compiler Techniques to Cache
Behavior Prediction. In: Proc. ACM SIGPLAN Workshop on Languages, Compil-
ers and Tools for Real-Time Systems (LCT-RTS’97). (1997)

18. Holsti, N., L̊angbacka, T., Saarinen, S.: Using a worst-case execution-time tool for
real-time verification of the DEBIE software. In: Proc. DASIA 2000 Conference
(Data Systems in Aerospace 2000, ESA SP-457). (2000)

19. Rodriguez, M., Silva, N., Esteves, J., Henriques, L., Costa, D., Holsti, N., Hjort-
naes, K.: Challenges in Calculating the WCET of a Complex On-board Satellite
Application. In: Proc. 3rd International Workshop on Worst-Case Execution Time
Analysis, (WCET’2003). (2003)

160 D. Sandell et al.

20. Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt, M., Theiling,
H., Thesing, S., Wilhelm, R.: Reliable and Precise WCET Determination for a
Real-Life Processor. In: Proc. 1st International Workshop on Embedded Systems,
(EMSOFT2000), LNCS 2211. (2001)

21. Thesing, S., Souyris, J., Heckmann, R., Randimbivololona, F., Langenbach, M.,
Wilhelm, R., Ferdinand, C.: An Abstract Interpretation-Based Timing Valida-
tion of Hard Real-Time Avionics Software. In: Proc. of the IEEE International
Conference on Dependable Systems and Networks (DSN-2003). (2003)

22. Ermedahl, A., Gustafsson, J., Lisper, B.: Experiences from Industrial WCET Anal-
ysis Case Studies. In: Proc. 5th International Workshop on Worst-Case Execution
Time Analysis, (WCET’2005). (2005) 19–22

23. Byhlin, S., Ermedahl, A., Gustafsson, J., Lisper, B.: Applying Static WCET Anal-
ysis to Automotive Communication Software. In: Proc. 17th Euromicro Conference
of Real-Time Systems, (ECRTS’05). (2005) 249–258

24. Engblom, J.: Static Properties of Embedded Real-Time Programs, and Their Im-
plications for Worst-Case Execution Time Analysis. In: Proc. 5th IEEE Real-Time
Technology and Applications Symposium (RTAS’99), IEEE Computer Society
Press (1999)

25. Sandberg, C.: Inspection of Industrial Code for Syntactical Loop Analysis.
In: Proc. 3rd International Workshop on Worst-Case Execution Time Analysis,
(WCET’2003). (2003)

26. Carlsson, M., Engblom, J., Ermedahl, A., Lindblad, J., Lisper, B.: Worst-case
execution time analysis of disable interrupt regions in a commercial real-time op-
erating system. In: Proc. 2nd International Workshop on Real-Time Tools (RT-
TOOLS’2002). (2002)

27. Colin, A., Puaut, I.: Worst-Case Execution Time Analysis for the RTEMS Real-
Time Operating System. In: Proc. 13th Euromicro Conference of Real-Time Sys-
tems, (ECRTS’01). (2001)

28. Lisper, B.: Personal communication with C. Ferdinand at AbsInt (2004)
29. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static

Analysis of Programs by Construction or Approximation of Fixpoints. In: Proc. 4th

ACM Symposium on Principles of Programming Languages, Los Angeles (1977)
238–252

30. Sandell, D.: Evaluating Static Worst Case Execution Time Analysis for a Commer-
cial Real-Time Operating System. Master’s thesis, Mlardalen University, Vsters,
Sweden (2004)

31. Lisper, B.: Fully Automatic, Parametric Worst-Case Execution Time Analysis. In
Gustafsson, J., ed.: Proc. 3rd International Workshop on Worst-Case Execution
Time Analysis, (WCET’2003), Porto (2003) 77–80

A Case Study in Domain-Customized Model

Checking for Real-Time Component Software

Matthew Hoosier1, Matthew B. Dwyer2, Robby1, and John Hatcliff1

1 Kansas State University
Manhattan, KS 66506, USA

{matt, robby, hatcliff}@cis.ksu.edu
2 University of Nebraska
Lincoln, NE 68588, USA

dwyer@cse.unl.edu

Abstract. Despite a decade of intensive research on general techniques
for reducing the complexity of model checking, scalability remains the
chief obstacle to its widespread adoption. Past experience has shown that
domain-specific information can often be leveraged to obtain state-space
reductions that go beyond general purpose reductions by customizing ex-
isting model checker implementations or by building new model-checking
engines dedicated to a particular domain. Unfortunately, these strategies
limit the dissemination of model checking across a number of domains
since it is often infeasible for domain experts to build their own dedicated
model checkers or to modify existing model checking engines.

To enable researchers to more easily tailor a model checking engine
to a particular software-related domain, we have constructed an exten-
sible and highly explicit-state software model checking framework called
Bogor. In this paper, we describe our experience in customizing Bogor
to check design models of avionics systems built using real-time CORBA
component-based middleware. This includes modeling the semantics of
a real-time CORBA event channel as a Bogor abstract data type, im-
plementing a customized distributed state-space exploration algorithm
that leverages the quasi-cyclic nature of periodic real-time computation,
and encapsulating the Bogor checking engine in a robust full-featured de-
velopment environment called Cadena that we have built for designing,
analyzing, synthesizing, and implementing systems using the CORBA
Component Model.

1 Introduction

Although focused research efforts have produced numerous techniques to reduce
the storage and time required for model checking (c.f. [5]), general model checkers
still are hampered by scalability limits. Certain universally applicable techniques
such as partial order reductions are capable of cutting state space exploration
costs dramatically—often by multiple orders of magnitude. Our and other inves-
tigators’ past experience has demonstrated, however, that specialized knowledge
about the system domain can be leveraged to enable further significant space

T. Margaria and B. Steffen (Eds.): ISoLA 2004, LNCS 4313, pp. 161–180, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

162 M. Hoosier et al.

reductions. In some cases, a new model-checking framework was developed tar-
geted to the semantics of a family of artifacts [3, 12], while in other cases it was
necessary to study an existing model checking framework in detail in order to
customize it [4, 6].

Unfortunately, this level of knowledge and effort currently prevents many do-
main experts who are not necessarily experts in model-checking from successfully
applying model checking to software analysis. Even though experts in different
areas of software engineering have significant domain knowledge about the se-
mantic primitives and properties of families of artifacts that could be brought
to bear to produce cost-effective semantic reasoning via model checking, these
experts should not be required to build their own model-checker or to pour
over the details of an existing model-checker implementation while carrying out
substantial modifications.

To enable researchers to more easily tailor a model-checking engine to a par-
ticular software-related domain, we have constructed an extensible and highly
modular explicit-state model checking framework called Bogor [19].1

For treating realistic designs and implementations in widely-used languages
such as Java and C#, Bogor provides rich base modeling language including fea-
tures that allow for dynamic creation of objects and threads, garbage collection,
virtual method calls and exception handling. For these built-in features, Bogor
employs state-of-the-art reduction techniques such as collapse compression [15],
heap symmetry [16], thread symmetry [2], and partial-order reductions. For tai-
loring to specific domains, Bogor provides (a) mechanisms for extending Bogor’s
modeling language with new primitive types, commands, expressions associated
with a particular application, and (b) a well-organized module facility for plug-
ging customized domain-tailored components into the model-checking engine.
Moreover, Bogor is designed to be easily encapsulated within larger domain-
specific development and verification environments.

In this paper, we report on a case study in which we used the above facilities
to customize Bogor for checking properties of avionics system designs. In this
domain, real-time event-driven systems are built from components defined in
the CORBA Component Model (CCM) and deployed on Boeing’s Bold Stroke
middleware infrastructure built from a variety of real-time oriented services and
the ACE/TAO real-time CORBA code base. Bogor is used to check global tem-
poral properties of transition systems models formed from component transition
systems as well as dedicated abstract domain models that capture the behavior
of real-time middleware and services. Specifically,

– new Bogor types are defined for components, component ports, and events
used for inter-component communication,

– new Bogor modeling language commands and expressions are introduced for
declaring and connecting components and component ports, publishing and
subscribing to events, and making calls on component method interfaces,

– new Bogor internal modules that model the complex semantics of the multi-
layered ACE/TAO real-time event channel in which a pool of real-time

1 Bogor project website: http://bogor.projects.cis.ksu.edu

A Case Study in Domain-Customized Model Checking 163

threads is used to dispatch events to components and drive the computation
of the system,

– new state vector representations are created that avoid storing data that does
not change during execution in this domain (e.g., connection information for
components),

– the general-purpose non-deterministic model-checker scheduler is replaced
by a new domain-specific scheduler that implements the particular real-time
rate-monotonic scheduling policy of the ACE/TAO real-time event channel
of the Bold Stroke environment,

– the standard depth-first search algorithm of the model checker is replaced
by a distributed quasi-cyclic search algorithm that takes advantage of the
periodic nature of systems in this domain to achieve dramatic reductions in
space and time.

This customized model checking framework has been encapsulated in a larger
tool called Cadena2 that we have constructed for supporting model-driven devel-
opment and analysis of systems built from both industry standard component
models such as the CORBA Component Model (CCM) and Enterprise Java
Beans (EJB) as well as proprietary models such as Boeing’s Prism component
architecture. This required building translators to/from Cadena’s design nota-
tions to Bogor’s transition system notations.

In earlier work, we have described the design rationale, features, and imple-
mentation of Bogor [19] and Cadena [13], different approaches for modeling the
ACE/TAO real-time event channel in Bogor [7], and the foundations of a se-
quential version of the quasi-cyclic search algorithm [9]. We reported in [13] our
experience verifying some temporal properties of the variety mentioned here ear-
lier. For example, we successfully verified systems to be free from race conditions
which would corrupt the integrity of data displayed on a user interface; this data
must find its way through a pipeline of components before being presented. In
this paper, we focus on our experience in carrying out the tasks involved in
the overarching goal of customizing Bogor to check real-time designs as part
of Cadena, and we highlight the incorporation of the distributed version of the
quasi-cyclic search strategy which significantly increases the scalability of the
approach.

Compared to previous work on model-checking publish-subscribe architec-
tures and component-based systems, our approach breaks new ground by using
Bogor’s sophisticated support for OO language features to capture more directly
the structure of real-world component and middleware systems, by tailoring a
variety of aspects of model-checking algorithms to the relatively complex thread-
ing model of the ACE/TAO real-time event-channel, and by incorporating the
verification framework into a robust development environment that is being used
by researchers at several industrial sites including Boeing, Lockheed-Martin, and
Rockwell-Collins to develop realistic systems.

The rest of this paper is organized as follows. Section 2 provides a brief
overview of the characteristics of systems in the domain that we are considering,
2 Cadena project website:http://cadena.projects.cis.ksu.edu

164 M. Hoosier et al.

and−correlation

Event Correlation

source (event published)

sink (event consumed)

Event Ports

receptacle (interface used)

facet (interface provided)

Interface (Data) Ports

enabled disabled

stale fresh

disabled enabled

Timer[20]

Timer[1]

Timer[5]

GPS

TacticalSteering

LazyActive

PushDataSource

Navigator

Passive

NavSteeringPoints

Modal2

NavSteering

Display

Display

ModeSource

PilotControl
AirFrame

Device

Modal1
Modal

Fig. 1. Simple avionics system

Section 3 describes how Bogor’s modeling language is customized to more di-
rectly support systems in this domain, and how Cadena design notations are
translated into Bogor, Section 4 describes how modules of Bogor’s built-in check-
ing engine are replaced with customized modules that implement distributed
quasi-cyclic search, Section 5 provides experimental results of applying the
framework, Section 6 discusses related work, and Section 7 concludes.

2 Component-Based Avionics Systems in Cadena

We now give a brief overview of the structure of distributed real-time embedded
systems that are designed using Cadena, and we explain how they give rise to
quasi-cyclic state-spaces.

Figure 1 presents the CORBA component model (CCM) architecture for a
very simple avionics system that shows steering cues on a pilot’s navigational
display. Although quite small, this system is indicative of the kind of system
structure found in Boeing Bold Stroke designs. In the system, the pilot can choose
between two different display modes: a tactical display mode displays steering
cues related to a tactical (ie, mission) objective, while a navigation display mode
displays cues related to a navigational objective. Cues for the navigation display
are derived in part from navigation steering points data that can be entered by
the navigator.

The system is realized as a collection of components coupled together via
interface and event connections. Input position data is gathered periodically at a
rate of 20Hz in the GPS component and then passed to an intermediate AirFrame
component, which in a more realistic system would take position data from a
variety of other sensors. Both the NavSteering and TacticalSteering component
produce cue data for Display based on air frame position data. The Navigator
component polls for inputs from the plane’s navigator at a rate of 5Hz that are

A Case Study in Domain-Customized Model Checking 165

used to form NavSteeringPoints data. This data is then used to form navigational
steering cues in NavSteering. PilotControl polls for a pilot steering mode at a rate
of 1Hz and enables or disables NavSteering and TacticalSteering accordingly.
NavSteering and TacticalSteering are referred to as modal components since they
each contain a mode variable (represented as a component attribute) whose
value (enabled,disabled) determines the component’s behavior. When a steering
component is in enabled mode, it processes data from AirFrame and notifies the
Display component that its data is ready to be retrieved over one of the modal
component’s interface connections. When a steering component is in disabled
mode, all incoming events from AirFrame are ignored and the component takes
no other action.

There are many interesting aspects to this system and its development in
Cadena that we cannot explain here due to lack of space (see [7] for more details).
We focus here on issues related to the quasi-cyclic structure of the state-spaces
of these systems.

In Bold Stroke applications, even though at a conceptual level component
event source ports are connected to event sink ports, in the implementation,
event communication is factored through a real-time CORBA event channel. Use
of such infrastructure is central to Bold Stroke computation because it provides
not only a mechanism for communicating events, but also a pool-based threading
model, time-triggered periodic events, and event correlation. In order to shield
application components from the physical aspects of the system, for product-line
flexibility, and for run-time efficiency, all components are passive (i.e., they do
not contain threads) – instead, component methods are run by event-channel
threads that dispatch events by calling the event handlers (“push methods” in
CORBA terminology) associated with event sink ports. Thus, the event channel
layer is the engine of the system in the sense that the threads from its pool
drive all the computation of the system. The Event Channel also provides event
correlation and event filtering mechanisms. In the example system of Figure 1,
and -correlation is used, for instance, to combine event flows from NavSteering
and AirFrame into Display. The semantics of and -correlation on two events e1

and e2 is that the event channel waits for an instance of both e1 and e2 to be
published before creating a notification event that is dispatched to the consumer
of the correlation.

Periodic processing in Bold Stroke applications is achieved by having a com-
ponent such as GPS subscribe to a periodic time-out (e. g. Timer[20]) that is
published by the real-time event-channel (the event-channel contains dedicated
timer threads to publish such events). The time between two occurrences of a
timeout of rate r is referred to as the frame of r (e.g., the length of the frame
associated with the 5 Hz rate is 200 milliseconds).

In constructing transition system models of Bold Stroke applications, we take
advantage of the fact that in rate-monotonic scheduling theory, which is used in
Bold Stroke systems, the frame associated with a rate r can be evenly divided
into some whole number of r′-frames for each rate r′ that is higher than r. In the
example system of Figure 1, the frame of the slowest rate (1 Hz) can be divided

166 M. Hoosier et al.

into five 5Hz frames, and each 5Hz frame can be divided into four 20Hz frames.
The longest frame/period (the frame associated with the lowest rate) is called
the hyper-period.

We do not keep an explicit representation of clock ticks, but instead our model
enforces the following constraints related to issuing of timeouts:

– a single timeout is issued for the slowest rate group in the hyper-period,
– timeouts for rate groups, ri and rj where ri > rj , are issued such that ri/rj

timeouts of rate ri are issued in a rj frame.

These constraints determine the total number and relative ordering of instances
of timeouts that may occur in the hyper-period. Combining these constraints
with the scheduling strategy implemented in Bogor for Cadena models safely
approximates all interleavings of timeouts and component actions (given the
assumption that no frame overruns occur) [7].

Systems such as the one in Figure 1 are captured in Cadena using specifica-
tions phrased in three parts: (1) component behavioral descriptions describe the
interface and transition semantics of component types such as the LazyActive
component type in Figure 1 of which AirFrame is an instance, (2) a reusable
model of a real-time CORBA event channel, and (3) system configuration in-
formation that describes the allocation of component instances and the port
connections made between each of these instances as diagramed in Figure 1 (see
[7] for a detailed explanation).

Note that in a real avionics system, there would be significant numeric compu-
tation to transform raw GPS data into a form that is useful for other components
such as AirFrame. We do not represent this computation in our model for several
significant reasons. First, in the actual systems supplied to us by Boeing, all such
computation is stripped out for security reasons and to avoid dissemination of
propriety information. Second, Boeing engineers are primarily concerned with
reasoning about control properties associated with modes, and the data compu-
tations that are stripped out almost never influence the modal behavior of the
system. In essence, Boeing engineers have by happenstance performed a manual
abstraction of the system—an abstraction that produces a system that is very
well-suited for model checking in that remaining mode data domains are finite
and small.

3 From Cadena Scenarios to Bogor Transition Systems

3.1 Bogor Architecture for Customization

We have already asserted that Bogor is engineered in a manner intended to make
introduction of new abstractions into the BIR language easy. Figure 2 presents
a high-level view of its internal architecture, which separates loosely into three
parts: (1) a front-end that parses and checks for well-formedness of a given model
expressed in the BIR language, (2) interpretive components that implement the
values and state transformations implied by BIR’s semantics, and (3) model

A Case Study in Domain-Customized Model Checking 167

AST
Transformer

Data−flow
Framework

Interpretative
Components

IValueFactory

IStateFactory

IExpEvaluator

IActionTaker

ISchedulingStg

ICounterExWr

IEventProvider

ISearcher IStateMgr

IBacktrackIF

IProgressMgr

IClassLoader

Model−Checking
Components

Extension Extension

Lexer

Parser

Well−formed−
ness Checker

ITransformer

Front−End

...

.config

.bir

Library of
Engine

Modules

Fig. 2. Architecture and primary modules of Bogor

checking engine components that implement the core search algorithm and state
storage strategies.

The separation of the various technical details required to implement any
model checker (e.g., state-space search and state management) is achieved by
presenting each component in an appropriate design pattern [10]. By employing
these widely-used, well-documented programming idioms to hide irrelevant im-
plementation details through encapsulation, dependency between components is
reduced to only a minimal public API. An implementation of one component
is, as a rule, not permitted to depend on any particular detail about another
component’s implementation.

The advantage of separating concerns into patterned modules is seen when
replacing the default behavior of Bogor. The ISearcher state-space search mod-
ule (a Strategy pattern), for instance, defines the general algorithm used to
visit states. The default implementation uses a depth-first search where the left
subtree of a state is fully explored before any node in a subtree to its right.
A replacement of this entire algorithm with a breadth- first search, then, only
required a different ISearcher which maintains an ordered queue of states to
be explored.

One last aspect of Bogor’s modular architecture has a tremendous payoff to
the efforts we describe here: the bundles of Java code which implement the se-
mantics of new abstract datatypes are contributed simply as new “extension”
modules. Each contribution of a new datatype implements only the core API
common to all Bogor modules, plus predictably named API methods corre-
sponding to operators for the datatype. In the next section, we elaborate on
this process with an example for the RT distributed middleware domain.

3.2 Re-usable Middleware for Event Propagation

Our domain customization of Bogor begins with the introduction of primitive
types for components, ports, events in BIR (Bandera Intermediate Representa-
tion; the input language of Bogor). As seen in Fig. 3, we use the typedef keyword
to inform Bogor that new, opaque datatypes are being added to the model. Then
a rich set of operators for manipulating these types follow (we have pictured only

168 M. Hoosier et al.

BIR specification

ex t en s i on CAD f o r CADModule
{

typede f Event ;
typede f Component ;
typede f Port ;

// c o n s t r u c t o r o p e r a t o r
expdef CAD. Component
createComponent (s t r i n g name) ;

// hook an o b j e c t onto a component as
// a named po r t
a c t i o nde f
r e g i s t e r P o r t (

CAD. Component c , CAD. Port p ,
s t r i n g name) ;

// get a l l the s u b s c r i b e r s to an event−
// p roduc i ng po r t
expdef ’ a []
g e t S ub s c r i b e r s <’a>(

CAD. Component c ,
S t r i n g even tPo r t) ;

}

Java implementation sketch

c lass EventValue implements
INonPrimitiveExtValue { . . . }

c lass ComponentValue implements
INonPrimitiveExtValue { . . . }

c lass PortValue implements
INonPrimitiveExtValue { . . . }

public c lass CADModule implements IModule
{

. . .

public IValue createComponent (
IExtArguments args)

{
ComponentValue r e s u l t ;
. . .
return r e s u l t ;

}

public IBackt rack ing In fo r e g i s t e rPo r t (
IExtArguments args)

{
ComponentValue c = (ComponentValue)

args . getArgument (0) ;
PortValue p = (PortValue)

args . getArgument (1) ;
S t r ing name = ((IStr ingValue)

args . getArgument (2))
. g e tS t r ing () ;

. . .
}

public IValue ge tSubsc r i b e r s (
IExtArguments args)

{
ComponentValue c = (ComponentValue)

args . getArgument (0) ;
S t r ing port = ((IStr ingValue)

args . getArgument (1))
. g e tS t r ing () ;

. . .
IArrayValue r e s u l t = valueFactory

. newArrayValue (. . .) ;

. . .
return r e s u l t ;

}
}

Fig. 3. Declaration of middleware modeling abstractions (excerpts)

three here); as we have done, one usually provides an expdef constructor for each
datatype and then a mixture of expdef side-effect-free expressions and actiondef
state transformations on the datatypes.

Accompanying the BIR declaration of new modeling abstractions in Fig. 3 is a
skeleton of the Java code which implements their semantics. The collection of op-
erators provided by a namespace—corresponding to the BIR extension clause—is
provided by a single Java class implementing Bogor’s library type IModule (here,
CADModule). To this, one typically contributes an additional Java class imple-
menting the generic Bogor INonPrimitiveExtValueAPI for each new BIR type;
in our case we add ComponentValue, PortValue, and EventValue. These classes
supply methods for encoding the relevant state space values of their instances
into the bit vector, traversing the heap, and other interpreter-related functions.

After the declaration and implementation of new datatypes is completed, we
turn our attention to constructing models of component systems with them (see
Fig. 4). First a CAD.Component BIR object is created for each real-world compo-
nent. Above this, a CAD.Port instance is associated with a host component for
each provided interface port in the component’s static description. The extension
also lifts event publication and subscribership to first-class citizenship by defin-
ing a set of operations (e.g., addSubscriberList() and addSubscriber()) to allow
simple maintenance of the event propagation chain. By making interconnections
among the CAD.Port instances (for facets and receptacles) and subscribership

A Case Study in Domain-Customized Model Checking 169

CAD. Component EventChanne l , GPS , AirFrame , NavDi sp lay , . . . ;

EventChanne l := CAD. c reateComponent () ;
GPS := CAD. c reateComponent(”GPS ”) ;
Ai rFrame := CAD. c reateComponenet(” Ai rFrame ”) ;
NavDi sp lay := CAD. c reateComponent(” NavDi sp lay ”) ;

// c r e a t e event−p rodu c i n g po r t
CAD. a d d Su b s c r i b e r L i s t (EventChanne l , ” timeOut20 ”) ;
. . .
// connect EventChanne l . t imeOut20 to GPS . timeOut
{|tempComSub |} := new ComponentSubsc r ibe r ;
{|tmepComSub |} . h and l e rFun c t i on := EventHand l e rType .{| common . BMDevice . t imeOut<hand l e r >()|};
{|tempComSub |} . portName := ”timeOut ” ;
{|tempComSub |} . component := GPS ;
{|tempComSub |} . i s S yn ch ronou s := f a l s e ;
{|tempComSub |} . d i s p a t c hRat e := 20 ;
CAD . addSub s c r i b e r<Sub s c r i b e r >(EventChanne l , ” timeOut20 ” , {|tempComSub |}) ;
. . .
// c r e a t e data−p r o v i d i n g (i n t e r f a c e) po r t
{| tempPort |} := CAD. c r e a t e P o r t () ;
CAD. setPortMethodHand l e r <...>(

{| tempPort |} ,
”data<get >”,
{|common . ReadData . data<get >()|}.{|common . BMLazyActive . dataOut . data<get >()|});

CAD . r e g i s t e r P o r t (AirFrame , {|tempPort |} , ”dataOut ”) ;

// connect consumer o f data−p r o v i d i n g po r t
CAD. c onn e c tPo r t s (Pa i r . c r e a t e <...>(NavDi sp lay , ” da t a I n ”) , Pa i r . c r e a t e <...>(AirFrame , ”dataOut ”)) ;

Fig. 4. ModalSP system assembly using Bogor middleware primitives (excerpts)

records between event producers and sinks analogous to actual system deploy-
ment, we create an object-oriented BIR system which structurally mimics the
real-world component software.

Figure 4 illustrates a series of calls to newly-defined middleware ADT oper-
ators used to assemble a fragment of a component model software system. As
is the case for all Bogor extensions, each of these high-level API operations is
implemented by a Java method on the extension’s class definition. Each new ab-
stract datatype introduced into BIR is implemented by a Java class. In order for
Bogor to correctly distinguish among instances of an ADT, the developer must
explicitly choose a bit pattern representative of the object’s state, to encode into
the model checker state vector. We leverage this by encoding only the sanitizied
logical information about the component as described in the closing of Section 2:
the values of any internal mode variables, external connection information, and
subscriber list members. This allows an often dramatic reduction in the amount
of storage required to maintain the seen-state set. By not encoding the minutia
of a component ADT’s implementation into the state vector, we also facilitate
reductions by merging the state-vector representation of semantically identical
but mechanically different data states.

The middleware datatype primitives for components, ports, and relatives are
supplemented by BIR-language library routines (not shown) to simulate the ac-
tion of an event channel in multiplexing event messages. During execution, a
component c’s method publishes a message from a registered event source port
by invoking the fireEventFromComponent() function, passing the name of the
outbound event port as an argument. This library function performs the generic
work of retrieving subscribership lists for the particular event source port on c,

170 M. Hoosier et al.

and then for each receiver of the event either directly invoking a handler function
or queuing the message for later delivery if it crosses thread boundaries.

3.3 Component Behaviors as Transition Systems

The heart of Cadena component specifications are the intra-method Cadena
Property Specification (CPS) transition system specifications. As discussed in
Section 2, Cadena models focus on expressing mode-conditioned execution con-
trol, port method invocations, and storage/retrieval of data values rather than
complicated numerical computations that are often present in avionics applica-
tions.

Client Port Method Invocations: The BIR language includes direct sup-
port for virtual functions, so achieving standard object-oriented method dispatch
(e.g., when Bogor is used to model Java programs) is easy. Calling port meth-
ods on remote components requires an extra step of indirection beyond this; the
receiving component and the interface method’s virtual dispatch table key must
be determined first. This is accomplished by introducing a wrapper function for
calling each different interface virtual method. The calling component’s method
body invokes the wrapper function, passing as arguments the client component
instance, client port name, and desired method name. The wrapper function then
consults the port interconnection information registered (as seen in Figure 4) to
retrieve the remote component instance and function reference. A virtual method
call is made on the provider component.

Variable Uses: Simple private variables and mode variables may both be used
in CPS expressions and as arguments to port method calls. These variables have
persistent values and are allocated in a per-component-instance basis. The ba-
sic Bogor middleware extension module defines polymorphic getAttribute() and
setAttribute() operations on the CAD.Component datatype. CPS variables are
stored and retrieved directly using this API; l-value occurrences of a variable
are converted to setAttribute updates, and r-value uses are replaced inline with
getAttribute expressions.

Conditionals: CPS allows both standard if branches and case switches on mode
variables. These are both translated directly as BIR guarded commands. One
must take care to avoid inadvertently blocking a transition by failing to add a fall-
through case for a missing else branch or default case; this is easily accomplished
by adding an extra guarded transition at the furcation point whose enabling
condition is the conjunction of every other branch’s test condition negated.

3.4 Custom Scheduler for Reducing Interleavings

As explored in [7], the target environment for Cadena system designs—a real-
time processor with tightly controlled scheduling policies—allows dramatic re-
ductions by preventing the exploration of impossible thread interleavings. Ca-

A Case Study in Domain-Customized Model Checking 171

dena component code is executed by threads from a priority-based pool. Fur-
ther, external verification techniques can decide whether a scenario configuration
satisfies timing requirements (that is, whether frame overruns occur). Accord-
ingly, all thread interleavings in which a lower-priority event dispatcher preempts
a higher-priority thread are irrelevant. Similarly, any interleaving which corre-
sponds to the system timer delivering a fresh batch of jobs before the current
jobs are finished, is infeasible.

A custom Bogor scheduling module (replacing the default ISchedulingStg
in Fig. 2) leverages these domain insights. Bogor’s default scheduler module ex-
haustively traverses the set of enabled transitions given the current model state.
Our distributed real-time scheduling module first retrieves the default sched-
uler’s calculated set of enabled transitions, then deletes any transitions which
correspond to priority inversion or frame overrun. This is done by using state
introspection facilities in Bogor to perform a sophisticated analysis of priority
information encoded in each thread’s stack variables to make determinations
about relative priorities of threads possible (without extensive static annotation
of these threads).

3.5 Extending Bogor to Inform Domain-Specific Counterexamples

The modeling approach described here introduces several new abstract datatypes
(e.g., the previously seen CAD.Component, CAD.Event, and CAD.Port, plus others
for generic lists, queues, etc.). While it is possible to use custom types in Bogor
without providing counterexample detail, the resulting error traces are devoid
of all state information for the domain-specific modules. Presumably, this is
undesirable since the ADT is central to the analysis being undertaken.

To facilitate the debugging and analysis of counterexample witnesses, the
middleware ADT modules each implement a Java method which writes a series
of schema-governed elements into the overall counterexample file (itself an XML
document). This grammar used to encode a custom datatype instance’s state
information allows unrestricted nesting of heap and primitive types inside an
extension type. This allows nested unfolding of any BIR objects “buried” inside
a container ADT. Our hands-on experience shows this to be valuable when
debugging the implementation of Bogor modules themselves.

3.6 Automatic Creation of Bogor Transition Systems

Cadena contains a model generator that automatically translates CPS transition
system into BIR. Architecturally, the model generator is a large Visitor pat-
tern implementation. By walking the structure of CPS syntax trees, the trans-
lator can produce appropriate BIR codes to simulate the dataflow behaviors
(see Section 3.3) of each component method. These are packaged inside the BIR
functions which make up the targets of virtual method calls. After creating the
virtual method dispatch tables of Section 3.3, the generator then writes a system
assembly phase (executed by the main thread before any others are forked) in

172 M. Hoosier et al.

which component instances and ports are allocated, inter-port connections are
configured, and event dispatch queues are initialized as described in Section 3.2.

4 Distributed Quasi-Cyclic Search

The time and storage costs required to explore the state space of a BIR tran-
sition system representative of a Cadena model increase, at a high level, with
the number of permutations among all components’ mode variables. Nondeter-
minism in the CPS dataflow statements is the primary source of branching in
the transition systems, since the domain-specific scheduling policy makes most
context switches deterministic. We now present an overview of a hybrid search
algorithm which leverages these observations to make the state space exploration
partitionable and, therefore, distributable among many processors.

4.1 Quasi-Cyclic Search

A state transition system is defined to be an ordered quadruple 〈S, s0, E,→〉,
where S is the set of all possible states, s0 is the initial state, E ⊆ S is the set
of final states, and →⊆ S × S is the transition relation. → is neither required to
be defined on all inputs nor is necessarily a function.

Each state in a transition system is defined to be one valuation of all the
system’s state variables V . Each state variable v is either an explicit variable
(e.g., global data) or an implicit program counter variable.

A classical depth-first search (DFS) exploration of a transition system’s state
space (the set of all s ∈ S reachable from the start state s0 by a possibly empty
sequence of applications of transitions in →) accords no variables in a state’s
vector of values any special status. Indeed, the values of variables serve only to
distinguish one state from another. By maintaining a global seen state set, the
depth-first algorithm is able to detect cycles and prune the exploration of a state
whose successors have already been visited.

The quasi-cyclic search (QCS) [9] is a strategy for coping with exploding mem-
ory requirements. It seeks to decompose the exploration of a transition system
from one large global traversal into the traversal of many smaller, independent
sub-state spaces. For example, event-driven systems feature an event-dispatching
thread which blocks at a well-known control point waiting for work. At this
point, a large chunk of its data structures (event queues, auxiliary lists) have
predictable contents (likely: empty). Formally, we systematize this intuition by
saying that a transient subset T = {t1, t2, . . . , tn} ⊆ V of the system’s state
variables repeatedly takes on the distinguished values 〈v1, v2, . . . , vn〉.

In order to decompose an overall state space into independent regions, then,
a QCS identifies those states for which T variables take on these distinguished
values. To do this, a boundary-state predicate p : S → B is defined so that

p(s) ⇐⇒ (t1 = v1 ∧ t2 = v2 ∧ . . . ∧ tn = vn) .

A Case Study in Domain-Customized Model Checking 173

1 Procedure QCS ()
2 seeng := ∅
3 RegionDFS(s0)
4 whi le ¬queueEmpty ()
5 sg := dequeue ()
6 seeng := seeng ∪ {sg}
7 seent := {s}
8 RegionDFS(sg)

9 Procedure RegionDFS(s)
10 workSet := enabled(s)
11 whi le workSet �= ∅
12 α ← workSet . remove ()

13 s′ := α(s)

14 i f p(s′)
15 i f s′ /∈ seeng ∧ ¬inQueue(s′)
16 enqueue (s′)
17 e l s e

18 i f s′ /∈ seent

19 seent := seent ∪ {s′}
20 pushStack (s′)
21 RegionDFS(s′)
22 popStack ()

Fig. 5. Quasi-cyclic search algorithm

The state space exploration is accomplished by doing a hybrid DFS-BFS
traversal. Beginning with the initial state s0, a depth-first search proceeds as
with classical state space exploration. The search is pruned whenever a state s
satisfying p(s) is reached. Rather than proceeding (past such an s) down such
paths, each such s is recorded in a pending-work queue. Each state space tree
beginning from a seed state and bounded by either terminal states, internal re-
peated states, or p-satisfying states is called a region. When each region’s DFS
terminates, a p-satisfying state sb is retrieved from the pending-work queue and
another DFS is initiated from sb. This algorithm is given in Figure 5.

4.2 Identification of Transient and Long-Lived Variables

The size and placement of decomposed regions in a QCS state exploration de-
pends entirely on the choice of p. The domain modeler must select conditions
that accurately reflect a meta-“reset” condition. In a graphical user interface, a
p which holds when there are no pending user input events and the main con-
trol loop is at its initial location is likely a good choice. For real-time systems
with priority scheduling, the developer may select a p which is satisfied when all
jobs are completed and the predictable delivery of work units is about to arrive
(start-of-frame). Cadena systems are similar to both cases (both user input and
frame boundaries are present). A quasi-cyclic search for Cadena uses a p which
holds exactly when the following conditions occur:

– The system abstraction of time (which wraps after each hyperperiod) is at
its initial value: 0;

– The thread designated to generate system timeouts is blocked (e.g., not
currently creating a timeout); and

– All event queues are empty and each event-dispatching thread is blocked
awaiting work.

174 M. Hoosier et al.

1 Process Coordinator ()
2 〈 seeng := ∅
3 tasks := 0
4 enqueue (s0)
5 〉
6 〈await queueEmpty () ∧ tasks = 0〉
7
8 Procedure GetSeed ()
9 whi le true

10 〈await ¬queueEmpty() ∨ tasks = 0 →
11 i f ¬queueEmpty()
12 stemp := dequeue ()
13 i f stemp /∈ seeng

14 seeng := seeng ∪ stemp
15 tasks := tasks + 1
16 return stemp
17 e l s e
18 cont inue
19 e l s e
20 return n i l
21 〉

22 Process RegionSearcher ()
23 whi le true
24 s := GetSeed ()
25 i f s i s n i l
26 break
27 seent := {s}
28 RegionDFS(s)
29 〈tasks := tasks − 1〉
30
31 Procedure RegionDFS(s)
32 workSet := enabled(s)
33 whi le workSet �= ∅
34 α ← workSet . remove ()

35 s′ := α(s)

36 i f p(s′)
37 <enqueue (s′)>
38 e l s e

39 i f s′ /∈ seent
40 seent := seent ∪ {s′}
41 pushStack (s′)
42 RegionDFS(s′)
43 popStack ()

Fig. 6. Distributed quasi-cyclic search algorithm

Intuitively, these conditions correspond to the beginning of a new hyperpe-
riod with no frame overrun. The long-lived values such as mode variables and
event correlation automata are not tested by p (and are thus in the non-transient
set) because they influence the inter-frame behavior. We remark at this point
that no choice of p can result in an incomplete or incorrect state space explo-
ration; the selection of a transient variables set T only affects the performance
of QCS.

4.3 Adapting QCS to Distributed State Space Exploration

Because the region searches conducted by the RegionDFS procedure in Fig-
ure 5 do not rely on any external data (except the global seen-before boundary
state set), the algorithm is amenable to parallelization. This is done, in broad
terms, by making the old RegionDFS into an active process. Figure 6 gives an
adaptation of standard QCS to a distributed environment. We have used angle
brackets (“〈” and “〉”) to denote critical section code running in mutual exclu-
sion, in the manner of SyncGen specifications [8]. A distinguished instance of
the Coordinator process maintains the global seen-before boundary state set
seeng, the counter of active tasks (tasks), and pending-work queue. As many
RegionSearcher processes as desired are initiated to consume boundary states
from seeng and explore the decomposed state space one region at a time.

4.4 Architecture

We have adapted Bogor to the distributed version of QCS by writing a new
state graph traversal module and substituting it for the standard searcher in
the RegionSearcher client process. Each of the subordinate client processes
requests a unit of work (by invoking the equivalent of what we have shown

A Case Study in Domain-Customized Model Checking 175

as GetSeed), which is a tuple < b, c, s > where b is the BIR transition from
which the region to be checked is excerpted, c is the Bogor system configuration
(runtime options, etc.), and s is the seed state (the formal parameter s of the
RegionDFS procedure). The subordinate process constructs a complete Bogor
system as directed by c, uses the lexical frontend to load the BIR system b, and
finally starts a model check from state s which is bounded by the predicate p
(this is encoded inside c). As the model check proceeds, each p-satisfying state
encountered is reported back to the Coordinator process.

4.5 Transporting State Information

Bogor is implemented in Java. Fortunately, the Remote Method Invocation
(RMI) subsystem directly supported in Java provides an effective mechanism
for copying state variable data to and from the Coordinator process. A deep
clone of the Bogor object containing all state information is automatically serial-
ized and reconstructed on the remote host during an RMI call. All that remains
to acclimate the state object to its new Bogor host process. An enhancement to
the main Bogor state API allows the state object to re-acquire references to any
required runtime modules.

4.6 Facilitating Counterexamples

Constructing counterexamples from a standard DFS is simple: a simple exam-
ination of the backtracking information stack reveals the complete path to a
violating state. In QCS, there is no “current” path from the root state to a
property violation. The seeng set contains a series of p-states whose successors
have been explored. Our implementation supplements this with two auxiliary
lookup tables: (1) a map between each p-satisfying state and parent seed state,
and (2) a map from each p-satisfying state and the series of backtracking steps
which lead to the parent seed state. When a violating state is reached, all back-
tracking path fragments are concatenated to form a complete trace.

5 Results

To evaluate the scalability of our parallel quasi-cyclic search, we have chosen
an updated version of a suitable system from the original experiments run on
quasi-cyclic systems [9].

The specific model we chose to test is the result of automatically compiling
the Cadena input artifacts for a ModalSP scenario plus two additional modal
components, into representative BIR code. In the notation of the scenario con-
figurations used in [9], this BIR system would be called a 〈2, 2, 2〉 configuration.

The experimental platform consisted of 4-processor AMD Opteron 842 sys-
tems running at 1.6 GHz with 16 GB of memory each, running SuSE Linux 8.2
(beta release for AMD64). The nodes are connected with a 1000 Mbps copper

176 M. Hoosier et al.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

 (
1/

M
in

ut
es

)

Number of searcher processes

JVM’s maximally spread out

(a) Adding each new client to least-
loaded machine

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

 (
1/

M
in

ut
es

)

Number of searcher processes

Front-loaded JVM Distribution

(b) Adding one fully-loaded client ma-
chine at a time

Fig. 7. Scalability graphs

ethernet switch. Bogor ran on top of the 1.5.0-beta-b32c native AMD64 Java Vir-
tual Machine from Sun. Client processes were allocated 8 GB maximum heap
size (half the total physical memory of its host).

Five total machines were used; in every instance one was reserved exclusively
for the coordinating server; the remaining four were used to execute client pro-
cesses.

Our initial series of trials was done by running n
4 out of n total client processes

on each machine. Notice that the performance gains drop off steeply after 8 client
processes are allocated in series (a) of Figure 7. This was something of a mystery
to us, because the CPU and I/O load on the coordinator server never reached
high levels. Why could our system only weakly support additional parallelism?

After careful examination, we noticed that the turning point in the perfor-
mance curve on (a) corresponded to the point where the total size of all JVM
heaps allocated on the client processes equal the amount of physical RAM avail-
able on the host. That is, the JVM’s were consuming 8

4 × 8 GB= 16 GB per
host at this point. Increasing the total number of client processes past 8 implied
double-booking the physical RAM on the hosts. Although the black-box nature
of the Java Virtual Machine’s memory manager prevents a detailed analysis, we
surmise that memory contention prevented more than 2 client processes from
fully utilizing the processor time on any one machine.

To test this hypothesis, we re-ran our test series. As before, additional client
processes were added in groups of 4. This time, though, each new 4-processes
client group was embodied as a fully loaded machine. This series, (b) in Figure 7,
shows the performance gains of adding one fully utilized client machine at a time.
The speedup curve is virtually linear.

Despite some problems getting full utilization of each client machine when
very high RAM allocations are desired, our architecture for distributed quasi-
cyclic searching appears to be intrinsically quite scalable. This should continue
to be the case so long as (1) the cost of copying states is dominated by the
time to search an average region and (2) the models themselves have sufficient

A Case Study in Domain-Customized Model Checking 177

nondeterminism to usually keep at least as many states in the unexplored-
boundary-state set as there are client processors.

We have additionally run many smaller models (also generated by Cadena)
through the distributed QCS system (BasicSP, standard ModalSP, MediumSP,
etc.). While less systematic than the data presented here and less persuasive
because their running times are much lower, these transition systems exhibited
roughly the same performance improvement curves as additional client processes
were brought online.

6 Related Work

Garavel et al. present a technique for distributing an explicit state space explo-
ration across multiple network computers in [11]. By carefully choosing a hash
function to use for partitioning states uniformly across network nodes, and by
implementing non-blocking Send and Recv operations between model-checking
processes, Garavel et al. improved the scalability of a SCSI subsystem model to
near-linear [11]. Our work on quasicyclic search does not use a static partition-
ing; rather a central pool of pending seed states is maintained and each node
retrieves one as it becomes free. Additionally, we can afford to use synchronous
analogues of the Send and Recv operations because intra-region searches typ-
ically execute very long sequences of transitions before interrupting to perform
network operations. We do not believe network messages impose a noticeable bot-
tleneck on sytem performance. The Java PathFinder (JPF) model checker [18]
uses a dynamic partitioning scheme in which the state-to-host hashing function
changes when analyses indicate that the ration of network messages to transi-
tion execution could be improved by redefining the state partitioning scheme.
Significant gains are made versus the baseline JPF static partitioning method.
As mentioned in context of [11] above, the quasicyclic search instead reduces
inter-node network traffic by decomposing a state space into many independent
regions; the entirety of each is explored by one model checker process without
network traffic interruptions.

Jones and Mercer improve on the static partitioning typically used in dis-
tributed model checking by randomly choosing the next state to expand from a
set of priority-sorted frontier states [17]. In some cases where a Bayes heurestic
search algorithm required many transitions to reach a first error state, intro-
ducing randomness into the search order significantly reduced the number of
transitions executed before reaching a first error state. Our quasicyclic search
in general seeks to rely on domain knowledge to improve parallel search per-
formance (Jones and Mercer specifically attempt to develop model-independent
methods), but in principle the approach of [17] could be used to inform intra-
region searches.

Ben-David et al. in [1] and later Heyman et al. in [14] give algorithms for
achieving load-balancing across the network nodes during model checking. The
former achieved counterexample generation without requiring any one network
node’s process to contain a complete state set and significantly reduced overall

178 M. Hoosier et al.

memory requirements. The latter builds on this approach by using adaptive par-
titioning of the state space and compact Binary Decision Diagrams (BDD’s)
which can be transferred over a network, to further decrease memory require-
ments. Because these approaches are adaptations of the symbolic model checking
algorithm, it is an open question whether they can be applied to our setting;
the Bogor framework uses an explicit, domain-tailored state-space exploration
algorithm.

7 Discussion

By leveraging various properties of the Bold Stroke avionics domain via cus-
tomization of Bogor, we have been able to reduce the cost of model checking
by multiple orders of magnitude compared to our earlier attempts [13] to model
these systems in dSpin. That is, we manually introduced an appropriate abstrac-
tion of the underlying middleware specifically used in Bold Stroke. Ideally, we
would like to have an automatic abstraction process, however, even with the
current state-of-the-art abstraction techniques, it is still hard to extract an ab-
stract model from CORBA middleware implementations (consisting of hundreds
of thousands of lines of C++ code) that is coarse such that it is tractable, yet,
precise enough to reason about the properties that we are interested in.

While the customization points of Bogor ease the incorporation of domain
knowledge to reduce the cost of model checking, they have to be used with
caution to ensure that the state-space exploration is still sound with respect
to the properties being checked. For example, when incorporating a queue data
structure in Bogor, one needs to ensure that its implementation (for example,
its bit-vector encoding) is correct. This can be done by using unit testing on the
linearization algorithm of the data structure. Moreover, its abstract operations
such as enqueue and dequeue should satisfy the expected properties such as
first-in first-out ordering. This can be checked by creating generic environments
that exercise the abstract operations as BIR models, and use Bogor to check the
properties, which can be expressed using automata. While these approaches do
not prove the correctness of the customizations, they help ensure a certain level of
confidence, and we gain more trust as the customizations are used frequently over
time. In some sense, this is analogous to implementing a compiler optimization
inside an optimizing compiler framework. That is, Bogor provides a framework
for optimizing state-space exploration, however, each customization implemented
in the framework has to be determined sound before being used.

As a complete beginner to Bogor, the first author required—all told—perhaps
two weeks to overhaul and debug all of the approximately 15 new native BIR
datatypes used in the Cadena models. The algorithmic extensions required to
implement a quasi-cyclic search required approximately another week; this hap-
pened somewhat later when the author was better acquainted with Bogor. Still,
even though we believe Bogor is much easier to customize than many existing
model checkers, a fair amount of knowledge of the internals of a model checker
is sometimes required for such efforts. The Bogor website provides a variety of

A Case Study in Domain-Customized Model Checking 179

educational, tutorial, and example materials to ease the burden of learning the
infrastructure, and we continue to search for additional automated techniques to
aid developers in building, testing, and debugging their own Bogor extensions.
Bogor has been used to teach graduate level model checking courses at a num-
ber of institutions in North America (e.g., Kansas State University, University of
Nebraska-Lincoln, Brigham Young University, Queen’s University), and Europe
(e.g., University of Göttingen), and multiple model checking researchers outside
of our research group have effectively customized Bogor to particular domains.

We have been able to introduce model checking concepts to several different
industrial research groups at Boeing, Lockheed-Martin, and Rockwell-Collins
due to the incorporation of Bogor into Cadena. However, to date, engineers at
these sites tend to make much more use of the design and structural analysis
capabilities of Cadena rather than the model checking technology because they
often do not want to put forth the effort required for writing transition models of
components. To address this issue, we are exploring (a) techniques for inferring
component transition models from run-time trace data and (b) opportunities for
further leveraging component transition system models in other forms of analysis
and code synthesis.

Acknowledgments

The authors would like to thank the members of the Santos group at Kansas
State University for many useful discussions about issues related to this paper,
especially Jesse Greenwald, Georg Jung, and Xianghua Deng. The research re-
ported in this paper was supported in part by the U.S. Army Research Office
(DAAD190110564), by DARPA/IXO’s PCES program (AFRL Contract F33615-
00-C-3044), by NSF (CCR-0306607) by Lockheed Martin, by Rockwell-Collins,
and by an IBM Corporation Eclipse Award.

References

1. S. Ben-David, T. Heyman, O. Grumberg, and A. Schuster. Scalable distributed on-
the-fly symbolic model checking. In Proceedings of Formal Methods in Computer-
Aided Design, pages 390–404, 2000.

2. D. Bosnacki, D. Dams, and L. Holenderski. Symmetric SPIN. International Journal
on Software Tools for Technology Transfer, 2002.

3. G. Brat, K. Havelund, S. Park, and W. Visser. Java PathFinder – a second gen-
eration of a Java model-checker. In Proceedings of the Workshop on Advances in
Verification, July 2000.

4. W. Chan, R. J. Anderson, P. Beame, D. H. Jones, D. Notkin, and W. E. Warner.
Optimizing symbolic model checking for statecharts. IEEE Transactions on Soft-
ware Engineering, 27(2):170–190, February 2001.

5. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
6. C. Demartini, R. Iosif, and R. Sisto. dspin : A dynamic extension of SPIN. In Proc.

of the 6th International SPIN Workshop, volume 1680, pages 261–276. Springer-
Verlag, Sept. 1999.

180 M. Hoosier et al.

7. W. Deng, M. B. Dwyer, J. Hatcliff, G. Jung, Robby, and G. Singh. Model-checking
middleware-based event-driven real-time embedded software. In Proceedings of the
First International Symposium on Formal Methods for Components and Objects
(FMCO 2002), November 2002.

8. X. Deng, M. B. Dwyer, J. Hatcliff, and M. Mizuno. Invariant-based specification,
synthesis, and verification of synchronization in concurrent programs. In Proceed-
ings of the 24th International Conference on Software Engineering. IEEE Press,
2002.

9. M. B. Dwyer, Robby, X. Deng, and J. Hatcliff. Space reductions for model check-
ing quasi-cyclic systems. In Proceedings of the Third International Conference on
Embedded Software, 2003.

10. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-
Wesley Pub. Co., January 1995.

11. H. Garavel, R. Mateescu, and I. Smarandache. Parallel state space construction for
model-checking. In Proceedings of Eighth International SPIN Workshop, volume
2057 of Lecture Notes in Computer Science, pages 217+. Springer-Verlag, 2001.

12. P. Godefroid. Model-checking for programming languages using VeriSoft. In Pro-
ceedings of the 24th ACM Symposium on Principles of Programming Languages
(POPL’97), pages 174–186, Jan. 1997.

13. J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. P. Ranganath. Cadena: An in-
tegrated development, analysis, and verification environment for component-based
systems. In Proceedings of the 25th International Conference on Software Engi-
neering. IEEE Press, May 2003.

14. T. Heyman, D. Geist, O. Grumberg, and A. Schuster. Achieving scalability
in parallel reachability analysis of very large circuits. In O. Grumberg, editor,
Computer-Aided Verification, 12th International Conference, volume 1855, pages
20–35. Springer, 2000.

15. G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279–294, May 1997.

16. R. Iosif. Symmetry reduction criteria for software model checking. In Proceedings
of Ninth International SPIN Workshop, volume 2318 of Lecture Notes in Computer
Science, pages 22–41. Springer-Verlag, Apr. 2002.

17. M. Jones and E. Mercer. Explicit state model checking with hopper. In Proceed-
ings of Eleventh International SPIN Workshop, volume 2989 of Lecture Notes in
Computer Science, pages 146–150. Springer-Verlag, April 2004.

18. F. Lerda and W. Visser. Addressing dynamic issues of program model checking. In
Proceedings of Eighth International SPIN Workshop, volume 2057 of Lecture Notes
in Computer Science, pages 80–102. Springer-Verlag, 2001.

19. Robby, M. B. Dwyer, and J. Hatcliff. Bogor: An extensible and highly-modular
model checking framework. In Proceedings of the 9th European Software Engi-
neering Conference held jointly with the 11th ACM SIGSOFT Symposium on the
Foundations of Software Engineering, 2003.

Models for Contract Conformance

Sriram K. Rajamani and Jakob Rehof

Microsoft Research
{sriram, rehof}@microsoft.com

Abstract. We have implemented a contract checker for asynchronous,
message-passing applications to check that service implementations con-
form to behavioural contracts. Our contract checker is based on a process
algebraic theory of conformance and is implemented on top of a software
model checker, Zing. The purpose of this paper is to explain the model
construction implemented by our contract checker and how it is related
to a mathematical theory of conformance. In addition, we point out cur-
rent and future research directions in model construction for conformance
checking in the presence of channel-passing.

1 Introduction

Asynchronous message-passing programming is becoming increasingly important
through the Internet. Web services hold the promise of making a new class of
distributed applications possible that can automate business processes that are
currently manual. Such applications are loosely coupled and may not be written
by a single organization. There is an increasing interest in being able to specify
the public behaviour of message-passing components by means of contracts in
order to enable their composition without knowledge of their implementation.

We are interested in checking conformance between a message-passing com-
ponent (a service) and a behavioural contract specifying the legal sequences
of messages that can be received or sent by the component. We have imple-
mented a conformance checker on top of our software model checker, Zing [3,2],
and have used it to check contract conformance for applications written in high-
level languages, including C# applications using messaging libraries of the .NET
framework and applications written in experimental language extensions with
message-passing primitives.

Our contract checker works by extracting models from source code into the
language accepted by Zing. In addition to extracting Zing models from source
code the checker must abstract models into a form that allows a mathematical
notion of conformance to be soundly checked. This paper focuses on the latter
problem. We describe the architecture of contract and service models and explain
how this model construction is related to our theory of conformance. In addition,
we point out current and future research directions in model construction for
conformance checking in the presence of channel-passing.

T. Margaria and B. Steffen (Eds.): ISoLA 2004, LNCS 4313, pp. 181–196, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

182 S.K. Rajamani and J. Rehof

2 Contract Checker

2.1 Services and Contracts

In order to illustrate our approach, we will use a typical web service scenario as
a running example, consisting of three distributed components – a client called
Traveler, a TravelAgent service and an Airline service. The travel agent service is
a client of the airline service. The system is outlined in Figure 1 which shows the
types and directions of messages that can flow between the three components:

• OrderF light �� • RequestSeatReservation �� •
• ChangeItinerary �� • ReserveSeats �� •
• Cancel �� • BookSeats �� •
• ReserveItinerary �� • •SeatReply��

• BookT rip �� • •ReservationReply��

• •RejectOrder�� •ConfirmBooking��

• •Proposal��

• •ConfirmCancel��

• •ConfirmReservation��

• •ConfirmBooking��

Traveler TravelAgent AirLine

Fig. 1. Web service system

Such a system can be implemented in a conventional programming language,
such as C# or Java, on top of a message-passing library. Alternatively, it can
be implemented using special, web service oriented languages with built-in sup-
port for message-passing operations, as are emerging in new standards such as
BPEL4WS (Business Process Execution Language for Web services), WSFL
(Web Services Flow Language) and WSCL (Web Service Conversation Lan-
guage).

There is an increasing interest in being able to specify the public behaviour of
service components by means of contracts, in order to enable their composition
without knowledge of their implementation. By specifying temporal behaviour –
legal sequences of messages – contracts go beyond current standard specifications
as found in, e.g., WSDL, which state non-behavioural properties, such as data
formats and directions of exchanged messages. Contracts for our example services
appear in Figure 5.

2.2 Zing Language and Models

The Zing model checker accepts an expressive input language, also called Zing
[1], which includes concurrency and message-passing primitives. The sequential
sublanguage of Zing is a subset of C# with no inheritance and fewer base types
and supports classes as reference types with methods, dynamic object creation

Models for Contract Conformance 183

async-call-statement :
async invocation-expression;

send-statement :
send(expression,expression);

select-statement :
select[select-qualifiers]{join-statements}

select-qualifier :
end first visible

join-statement :
join-list− >embedded-statement
timeout− >embedded-statement

join-list :
join-pattern
join-list&&join-pattern

join-pattern :
wait(boolean-expression)
receive(expression,expression)
event(integer-expression,

integer-expression,
boolean-expression)

event-statement :
event(integer-expression,

integer-expression,
boolean-expression)

Fig. 2. Zing concurrency and communication primitives

and structures. Zing supports fairly direct compilation from source languages,
such as C# or Java, or special message-passing languages.

Figure 2 shows the core concurrency and communication primitives in Zing.
The asynchronous call statement spawns a parallel process defined by a method.
For example, async o.foo(); S creates a new instance of foo and runs it asyn-
chronously in parallel with the continuation S. Zing automatically explores all
interleavings between parallel processes. The statement send(c,e) sends the
value denoted by e on the channel denoted by c. Zing channels are unbounded
FIFO buffers and the send is asynchronous. The select statement is a powerful
synchronization primitive, which blocks waiting for one of its join patterns to be
satisfied. One of the satisfied patterns is chosen nondeterministically and the as-
sociated continuation, separated by ->, is executed. The pattern wait(b) waits
for boolean expression b to become true. The pattern receive(c,x) waits until
the queue denoted by c becomes nonempty after which it consumes the value
at the front of the queue and binds it to x. The pattern event(m,n,b) can
always be triggered. Choosing this pattern creates a corresponding internal Zing
event, e(m, n, b), that can be observed and captured by the Zing runtime. The
effect is the same when executing an event statement. Complex join patterns
can be obtained with the operator && which requires the constituent patterns to
be satisfied in any order.

An internal nondeterministic choice between statements S1 and S2 can be
expressed as select{ wait(true) -> S1 wait(true) -> S2}. In a select state-
ment, the qualifier visible tells the Zing runtime to generate a special internal
event, called τ , whenever a nondeterministic choice is made between patterns.
This facility is used to observe the structure of nondeterminism of a model and
is essential in our conformance checker (see Section 5). We bound queue sizes by
coding a blocking send, as select{ wait(sizeof(c) <= k) -> send(c,e);}.

184 S.K. Rajamani and J. Rehof

2.3 Tool Architecture

The architecture of our contract checker is shown in Figure 3. It implements a
theory of conformance [11,10] on top of the Zing software model checker [3,2]. The
conformance check is applied to one service implementation at a time, together
with the contracts the service depends on.

A contract C can be in two distinct relations to a service S. First, C can
specify the service – meaning that S must implement C – in which case we call
C the exported contract of S. We assume that a service has exactly one exported
contract. Second, a contract C can specify (i.e., be the exported contract of)
some other service that S is a client of, in which case we call C an imported
contract of S. We assume that S may have multiple imported contracts.

The inputs to the conformance checker are a service implementation, its ex-
ported contract, and the imported contracts it depends on. The service and its
imported contracts are combined into a Zing model, called the implementation
model. The exported contract is compiled into another Zing model, called the
exported contract model. These two Zing models are compiled into executables
(.dll files) which are fed to the Zing conformance checker. The checker decides

Fig. 3. Contract checking process

Contract TravelContract = Contract AirLineContract =
OrderFlight? -> repeat

RejectOrder! Stop RequestSeatReservation? -> SeatReply!
ReserveSeats? -> ReservationReply!

Proposal! BookSeats? -> ConfirmBooking! Stop
repeat end

ChangeItinerary? ->
RejectOrder! # Proposal!

+ Cancel? ->
ConfirmCancel! Stop

+ ReserveItinerary? ->
RejectOrder!

#
ConfirmReservation!
BookTrip? -> ConfirmBooking!

end

Fig. 4. Exported contract (left) and imported contract (right)

Models for Contract Conformance 185

class TravelAgent: TravelContract{
Itin itin;
PO po;
CreditInfo creditinfo;

void Run(TravelAgentChannel Client){
receive(Client, // (1)

OrderFlight(order, itinerary)) ->
{
AirLineChannel AirLineService = // (2)

AirLine.Connect();

if (! ValidateOrder()){
send(Client, RejectOrder(po, itin));
Stop;
}
else
SendProposal(Client, AirLineService);

}

while (true){
select
{
receive(Client, ChangeItinerary(po, itin))->
{
if (! ValidateOrder())
send(Client, RejectOrder(po, itin));

else
SendProposal(Client, AirLineService);

}
receive(Client, Cancel(po, itin)) ->
{
Clear(po, itin);
send(Client, ConfirmCancel(po, itin));
break;

}
receive(Client,

ReserveItinerary(po, creditinfo))->
{
send(AirLineService, ReserveSeats(sr)); // (3)
receive(AirLineService,

ReservationReply(reply))->
{
if (reply.success){
send(Client,

ConfirmReservation(po, itin));
BookTrip();
break;

}
else
send(Client, RejectOrder(po, itin));

} // receive
} // receive
} // select

} // while
} // Run
}

Fig. 5. Service implementation
(initial Zing model)

Fig. 6. Zing implementation model
(abstract model)

186 S.K. Rajamani and J. Rehof

whether the implementation model conforms to the exported contract model by
exploring the state spaces of the models.

An important task in model construction is abstraction, whereby parts of the
source program that are irrelevant for the properties we are interested in are
thrown away, see e.g. [8,12]. We find it useful to separate the task of model com-
pilation from the task of abstraction, since it allows developers familiar with com-
piler technology but less familiar with advanced program analysis to produce ini-
tial Zing models. The Zing model checking framework then performs abstraction
and other model transformations on the initial models. Since this paper focuses
on the specific model construction used in contract checking, we will assume for
simplicity that we are given an initial Zing model as our service implementation.

Figure 5 contains excerpts of an example initial Zing model 1 for the TravelA-
gent service outlined in Figure 1. The model is defined by class TravelAgent to-
gether with definitions of the exported and imported contracts it depends on. The
TravelAgent class is annotated with the name of a contract, TravelContract,
indicating the exported contract of the service. The contract definition is
shown in Figure 4, left. The TravelAgent service is a client of another ser-
vice, AirLineService. Its contract definition is shown in Figure 4, right. This
contract is imported by the TravelAgent service.

A contract specifies the externally visible, legal sequences of message types
accepted by the service, abstracting away all internal computation of the service
as well as message payloads. Contracts are defined in a succinct CSP-like nota-
tion [13], where T? denotes receiving a message of type T, T! denotes sending
a message of type T, P#Q denotes the internal choice between P and Q, and
P+Q denotes external choice.

3 Principles of Contract Checking

3.1 Compositional Conformance Checking

A central idea in our contract checker is to check conformance between services
and contracts compositionally. Compositionality means that only one service
implementation is checked against its contract at a time, by substituting contracts
for the other services, if any, that the service uses. Because contracts abstract
from the internal computation of the services they specify, substituting contracts
for services enhances model checking performance. It also allows us to check a
service without relying on implementation code for other services that are used.
This is important for web service applications, because different services may be
developed by different organizations, and the code for other services may not be
available.

Contracts must be substitutable for services that conform to them. The exact
meaning of substitutability depends on the properties contract checking should

1 The example has been edited for illustrative purposes and to keep it within bounds,
but it is representative of models that have been generated by our tool on real
applications.

Models for Contract Conformance 187

guarantee. Our contract checker guarantees stuck-freedom of a system of ser-
vices. A stuck state is one in which a component is blocked waiting to receive
a message that is not sent (deadlock), or a component sends a message that is
not received (unreceived messages). Stuck-freedom, then, ensures that a message
exchange proceeds with consistent expectations between senders and receivers
about which messages are sent and when. The Zing conformance checker imple-
ments a theory of stuck-free conformance [11,10] that we have developed for CCS
[18,19]. Substitutability can be formalized as the following property, where P is
a service, Q is any client of P , C is the contract of P , ≤ denotes conformance,
and | denotes parallel composition:

– If P ≤ C, then C | Q stuck-free implies P | Q stuck-free, for all Q.

When checking stuck-freedom against any client Q, it is therefore safe to substi-
tute C for P . Our conformance relation ≤ described in Section 3.2 guarantees
substitutability.

3.2 Stuck-Free Conformance

Our stuck-free conformance [11,10] relation between CCS processes [18,19] is
the largest relation ≤ such that, whenever P ≤ Q, then the following conditions
hold:

C1. If P
τ∗λ−→ P ′ then there exists Q′ such that Q

τ∗λ−→ Q′ and P ′ ≤ Q′.
C2. If P can refuse X while ready on Y , then Q can refuse X while ready on Y .

Here, P
τ∗λ−→ P ′ means that P can transition to P ′ on a sequence of hidden

actions, τ , and a visible action, λ. A process is called stable, if it cannot do any
τ -actions. If X and Y are sets of visible actions, we say that P can refuse X

while ready on Y , if there exists a stable P ′ such that P
τ∗

−→ P ′ and (i) P ′ refuses
X , i.e., P ′ cannot do a co-action of any action in X , and (ii) P ′ is ready on Y ,
i.e., P ′ can do every action in Y . In condition [C2] above, the ready sets Y range
only over singleton sets or the empty set. The restriction to singleton or empty
ready sets is important since it allows specifications to be more nondeterministic
than implementations. The references [11,10] contain a detailed explanation of
this and other aspects of stuck-free conformance. Zing’s conformance checking
algorithm implements the relation ≤ and is described in [3].

We can show [11,10] that conformance ≤ is a simulation relation satisfying
the following two properties:

1. (Precongruence) P ≤ Q implies C [P] ≤ C [Q] for all CCS contexts C
2. (Preservation) If P ≤ Q then P not stuck-free implies Q not stuck-free

Precongruence says that stuck-free conformance is preserved by all CCS contexts.
Preservation says that stuck-free conformance preserves the ability to get stuck.
Together, the two properties immediately imply:

3. (Substitutability) If P ≤ Q then C [Q] stuck-free implies C [P] stuck-free, for
all contexts C

188 S.K. Rajamani and J. Rehof

3.3 Exported and Imported Contracts

We think abstractly of a service P that exports a contract C as a CCS process
with a free channel name a on which it implements its exported contract and
with a set of channel names b1, . . . , bn connecting it to other services S1, . . . , Sn

that it is a client of. The whole system can then be thought of as:

SP (a) = (new b1 . . . bn)(S1(b1) | . . . | Sn(bn) | P (a, b1, . . . , bn))

The new-binder on the names b1, . . . , bn indicates that we think of the connections
to the other services S1, . . . , Sn as being local, i.e., no other processes can interact
with P on any of these names.

The tasks in contract checking P for stuck-freedom are:

1. Check that SP (a) ≤ C(a), where C is the exported contract of P
2. Check that P does not get stuck with any of the services S1, . . . , Sn it is a

client of

To enable compositional checking we employ the substitutability principle in
model construction:

– Imported contracts are substituted for the services they specify

Hence, our contract checker constructs the model of the system:

SP (a)M = (new b1 . . . bn)(C1(b1) | . . . | Cn(bn) | P (a, b1, . . . , bn)M)

where the contracts C1, . . . , Cn have been used instead of the services they spec-
ify (QM denotes a model of Q.)

The exported and imported roles of a contract require different semantics
in contract checking. Because conformance with exported contracts (task 1)
must ensure stuck-free substitutability in all possible contexts, the conformance
relation ≤ is formulated in terms of Milner’s commitment semantics of processes
[18,19]. Commitments are generated by communication actions regardless of the
environment and allows reasoning over an open system in all contexts. On the
other hand, stuck-freedom against a particular process (task 2) is a property of a
closed system. Hence, we interpret a contract occurring in its imported role as a
concretely executing process with reaction semantics [18,19], where only internal
reactions (τ actions) generated from an action and its co-action are possible.

4 Model Abstraction

Constructing an abstract service model from a given initial model involves:

1. Omit data and statements that are irrelevant for conformance checking
2. Abstract actions on the message channels
3. Construct suitable models of imported contracts and integrate them into the

service implementation model

Figure 6 shows the abstract service implementation model generated from the
initial model. Data other than communication channels and message types are
omitted, and the control structure of the initial model is abstracted. For example,
conditionals are transformed into nondeterministic choices.

Models for Contract Conformance 189

4.1 Implementation Model

As mentioned in Section 3.3, imported contracts are interpreted under reaction
semantics, whereas exported contracts are interpreted under commitment se-
mantics. The event statement is used in Zing to model commitments, whereas
the send and receive statements are concrete communication statements that
operate on message queues and are used to model actions under reaction se-
mantics. Referring to our example, actions on the Client channel are compiled
into Zing event statements, whereas actions on the AirLineService channel
are abstracted into send and receive statements. To see how that manifests
in the abstracted model, compare the statements with comments numbered (1)
and (3) in Figure 6 with the corresponding statements in the initial program
(Figure 5).

The Zing conformance checker can run two models (given to it as distinct dll’s)
and compare events generated by the models. We use the numerical arguments to
encode event numbers (denoting types of events in this application) and channel
numbers, and we use the boolean argument to indicate the direction of the
message. Hence, we interpret event(m,n,true) as standing for “a message of
type m is sent on channel n”.

Substitution of imported contracts for the services they specify is illustrated
in the statement with comment numbered (2) in Figure 6. Here, the connection
to the AirLineService is abstracted by calling the constructor method of the
class Imp AirLineContract, which is the model of the imported contract (dis-
cussed further in Section 4.2). A side-effect of calling this constructor is to fork
off a concurrent process, compiled from the AirLineContract specification in
Figure 5 (bottom right), which implements the semantics of the imported con-
tract. That way, when the implementation connects to a service whose contract
it imports, the model will start a process that implements its contract, and the
service model will start interacting with the contract process through message
queues. Rather than transmitting real messages, the model transmits numbers
indicating the types of messages, according a numerical coding of message types
as shown in Figure 6 (top).

4.2 Contract Models

The exported contract model of the TravelContract defined in Figure 5 is
shown in Figure 7, left. It represents all actions as commitments (event’s). The
conformance check TravelAgentModel≤ Exp TravelContract is performed by
compiling two distinct dll’s from the service implementation and the exported
contract model. The Run methods of both of these models are marked as static
activate, which tells Zing to treat these methods as start-up (“main”) pro-
cesses. After launching the processes, the Zing conformance checker drives them
through their state spaces, collects the events generated and compares them
according to the mathematical definition of stuck-free conformance [11,10].

The imported contract model of the AirLineContract defined in Figure 5 is
shown in Figure 7, right. The constructor method, new Imp AirLineContract,
spawns a new instance of the Run method of the model with a fresh channel

190 S.K. Rajamani and J. Rehof

Fig. 7. Zing exported contract model (left) and Zing imported contract model (right)

of type Imp AirLineChannel as argument. The async keyword in Zing means
that the called method is run as a concurrent process. This abstraction scheme
allows us to model multiple independent instantiations of a service by calling
the corresponding contract constructor each time. The Run method contains the
model code derived from the contract definition, by interpreting its actions as
send and receive actions on message channels carrying type codes. When called
from the service implementation model, the imported contract model fires up as
a concurrent process and interacts with it.

5 Stability and Message Queues

In this section we consider two important aspects of how the theory of stuck-
free conformance [11,10] supports the model construction described above. We
consider in more detail the role of nondeterminism and hidden (τ) events, and
we discuss the problem of modeling ordered message queues and type-dependent
messaging constructs.

5.1 Stability

A process is called stable, if it cannot generate a τ -action. Such actions model in-
ternal, hidden computation steps. During conformance checking, Zing’s runtime

Models for Contract Conformance 191

generates events when statements are executed. By observing these events, the
conformance checker implements the definition of stuck-free conformance given
above. Events that are generated from the Zing event statement are classified
as external events, all other events are classified as τ -events by the conformance
checker. Such other events include the call of a method, the execution of an as-
signment statement, a concrete reaction generated by a communication (message
being placed into or removed from a message queue), forking a process, etc. Zing
can therefore observe whether a state is stable or not and the external actions,
if any, that can be generated from it. Even though Zing models can become very
complicated due to the use of expressive language features, we can establish a
very direct relation between our Zing models and the theory of conformance for
CCS, since both systems are labeled transition systems.

Instability is closely related to internal, hidden nondeterminism. Contracts
may be more nondeterminstic than the implementations they specify. An inter-
nal non-deterministic choice between statements S1 and S2 can be expressed
in Zing as select visible{ wait(true) -> S1 wait(true) -> S2}. This
statement generates a τ -event in the Zing runtime and corresponds directly to
the process algebraic encoding of internal nondeterministic choice S1 # S2 as
τ.S1 +τ.S2, where + denotes external choice. Subtle cases can arise in situations
with mixed choice, of the form a.P + τ.Q. Notice that P = a+ τ.b is not equiva-
lent to Q = a # b (we have P ≤ Q but not Q ≤ P), and even a ≤ a+τ is false, as
can be verified from the definition. Such issues can arise in model construction.
For example, consider a program that receives messages by an external choice
over message types with a timeout case attached:

select{
receive(c, T1(...)) -> S1
...
receive(c, Tn(...)) -> Sn

Timeout -> Sn+1 }

In abstracting this statement to commitment actions for conformance checking
with an exported contract, we generate a statement of the form

select visible{
receive(MsgType.T1, 0, false) -> SM

1
...
receive(MsgType.Tn, 0, false) -> SM

n

wait(true) -> SM
n+1 }

The latter statement is equivalent to the CCS expression
T1.SM

1 + ... + Tn.SM
n + τ.SM

n+1.

5.2 Ordered Message Queues

Asynchronous message-passing via buffered, bidirectional and ordered commu-
nication channels is essential in practical applications. Two processes commu-
nicating with each other via a bidirectional ordered channel maintain distinct
orderings on messages travelling in each direction, so two queues are needed
to implement such a channel, one for the communication in each direction. Zing

192 S.K. Rajamani and J. Rehof

supports ordered message queues, and we use pairs of such to implement bidirec-
tional channels. However, since our event based models of actions on channels
with exported contracts abstract away from queues, it requires an argument to
show that the conformance check remains sound in the presence of a particu-
lar, ordered queue semantics. Moreover, the ability to specify type-dependent
receives, as exemplified by the form select{ receive(c, T1(...)) -> ...},
is very convenient for many programming tasks. The statement blocks until a
message of specified type T1 ... arrives at the front of the input queue associ-
ated with channel c. The type-dependent nature of receive statements raises a
similar question about soundness of conformance checking.

These questions are best approached rigorously by considering an unbounded
queue encoding in CCS (see [19]). We will define two queues, a left queue QL

and a right queue QR. Let A be a finite alphabet of message types, let A range
over A, and let w range over A∗. We define the queue QL as follows:

QL
〈〉 =

∑
A(inL

A?.Q
L
〈A〉 + emptyL!.QL

〈〉)

QL
〈w,A′〉 =

∑
A(inL

A?.Q
L
〈A,w,A′〉 + outL

A′!.QL
〈w〉)

We have used the encoding inL
A? for the action of receiving a message of type

A on queue QL, and similarly for sending, outL
A!, so we can express message

order based on message types in A as well as type-dependent receives from
these queues. The queue QR is defined analogously, using names inR

B, outR
B

with types B drawn from a finite set B. Now consider two processes, say C and
P , communicating via a bidirectional queue, with messages incoming to C and
outgoing from P typed from A, and messages incoming to P and outgoing from
C typed in B. C could be an imported contract model and P an implementation
model that uses it. We can write the system as C′ | P ′ with

C′ = (new inL
A1

. . . inL
An

)(C | QL
〈〉)

and
P ′ = (new inR

B1
. . . inR

Bm
)(P | QR

〈〉)

Notice that the free names in C′ are of the form outL
A or emptyL, and the free

names in P ′ are of the form outR
B or emptyR. In C, sending a message of type

A is coded as the action inA! and receiving a message of type B is coded as
the action outR

B?. Similarly, in P , sending a message of type B is coded as the
action inR

B!, and receiving a message of type A is coded as the action outL
A?.

To see that our model construction remains sound in the presence of these
queues and codings, observe that the system C′ | P ′ can be written as C P

Q [C],
where C P

Q is the context

C P
Q = (new inL

A1
. . . inL

An
)([] | QL

〈〉) | P ′

Hence, if we know that R ≤ C, we also know that C P
Q [R] ≤ C P

Q [C], for all P ,
by the Precongruence property of conformance. It follows that conformance is

Models for Contract Conformance 193

preserved by the type-dependent ordered queue semantics, and therefore it is
sound to check conformance in abstraction from the queue.

The previous argument shows soundness, but it does not rule out that the
nature of conformance can be impacted by the presence of a queue. For example,
consider the process

X = inR
A1
! | inR

A2
!

which sends messages A1 and A2 to the same queue in parallel. Compare with
the process

Y = (inR
A1
!.inR

A2
!) # (inR

A2
!.inR

A1
!)

By the definition of conformance, we have X ≤ Y , but not Y ≤ X . However,
we do have C P

Q [Y] ≤ C P
Q [X], for all P . The reason is that the act of placing a

message into the queue generates a τ action that signifies the determination of
a particular ordering of messages. An consequence of this situation is that our
conformance check does not determine that, say,

select visible {wait(true) -> {send(c,A1());send(c,A2())}
wait(true) -> {send(c,A2());send(c,A1())}}

can be a valid implementation of the specification X in this context (we have
shown the implementation as it could look prior to event abstraction.) Hence,
our checks may be overly conservative in some cases. The problem of adjusting
the theory of conformance to a particular queue semantics may be an interesting
one, but we have not pursued it.

6 Current and Future Work

In this section we discuss current work on tool integration and two generaliza-
tions of our method of model construction that we are currently investigating.

Tool Integration. Our contract checker is being integrated into a development
environment for a language with web service oriented, message-passing exten-
sions. The contract checker is being integrated into the compilation pipeline,
much like a type checker, where error messages arising from contract confor-
mance violations are reflected back to the source code automatically. Model ab-
straction is performed automatically from the source and is currently restricted
to the core message-passing sublanguage. Extensions to the abstraction to handle
more language constructs are foreseen.

Channel Passing. Channel passing requires us to generalize our methods from
CCS to the π-calculus [19]. Inspired by [15] we have proposed a behavioural type
system for the π-calculus that is based on model extraction into CCS models and
simulation as subtyping [7]. Since stuck-free conformance is a restriction of CCS
simulation, it is sound to use stuck-free conformance in that system. However,
the system has limitations it would be interesting to lift. In particular, the system
is asymmetric in that sending a channel is correlated with importing its contract

194 S.K. Rajamani and J. Rehof

and receiving a channel is correlated with exporting its contract. While this is
natural in many important practical scenarios, it may not be general enough,
and it is logically less satisfying. We are currently working towards lifting this
restriction.

Multiple Exported Contracts. Our model construction assumes that a ser-
vice implementation has at most one exported contract. But a service P (a, b)
could serve one client on channel a and another on b. With channel-passing this
is an important issue. One solution is to specify the actions on a and b as a
single contract C(a, b). The problem is where to put the specification and where
to initiate the contract checks. If we specify two contracts, C1(a) and C2(b),
the problem is how they are related. If we assume they are independent, then
the service must implement the contract C1(a) | C2(b) which imposes many re-
strictions on the implementation. We could define a projection operator, ↓, such
that (i) P ≤ (P ↓a) | (P ↓b) and (ii) (P ↓a) ≤ C1(a) and (P ↓b) ≤ C2(b). The
natural operator ↓a is hiding [22], turning actions other than a into τ events.
This operator does not automatically satisfy (i). For example,

(a + b) �≤ (a + τ) | (τ + b) = ((a + b) ↓a) | ((a + b) ↓b)

The failure of conformance here is due to the readiness constraint in condition
[C2] in the defintion of conformance. We can consider restricting the readiness
condition in the definition of conformance to encompass only output actions, in
order to validate more general projections (doing so is theoretically possible).
We can require clients of the contracts to be “isolated”, so that they only use
contracts independently. We are currently working out the latter two ideas in
more detail.

7 Related Work

Stuck-free conformance builds on both the CSP tradition [13,22] and the CCS
tradition [18,19]. It is closely related to and inspired by stable failures refinement
in CSP [6,13,22] and the refinement checker FDR [22]. Stuck-free conformance is
also related to the refusals preorder for CCS as developed in Iain Phillips’ theory
of refusal testing [20,5] and to 2/3 bisimulation by Larsen and Skou [17]. Our
papers on stuck-free conformance [11,10] contain more in-depth comparisons.

We are not aware of a tool for source-level compositional conformance analysis
of message-passing programs whose architecture of models is as described in this
paper.

Many related tools based on model checking have been developed, including
Spin [14] and dspin [16]. Model checkers have also been used to check Java
programs either directly [24,23,21] or by constructing slices or other abstrac-
tions [9]. The slam project [4] has similar goals to zing and has been very
successful in checking control-dominated properties of device drivers written in
C. Unlike zing, it does not handle concurrent programs, and it is unable to prove
interesting properties on heap-intensive programs.

Models for Contract Conformance 195

References

1. Zing Language Specification – http://research.microsoft.com/zing.

2. T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xie. Zing: A model
checker for concurrent software. In CAV 2004:16th International Conference on
Computer Aided Verification, Boston, Massachusetts, July 2004, LNCS. Springer-
Verlag, 2004.

3. T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xie. Zing: Exploiting
program structure for model checking concurrent software. In CONCUR 2004: Fif-
teenth International Conference on Concurrency Theory, London, U.K., September
2004, LNCS. Springer-Verlag, 2004. Invited paper.

4. T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via
static analysis. In POPL 02: Principles of Programming Languages, pages 1–3.
ACM, January 2002.

5. E. Brinksma, L. Heerink, and J. Tretmans. Developments in testing transition sys-
tems. In Testing of Communicating Systems, IFIP TC6 10th International Work-
shop on Testing of Communicating Systems, pages 143 – 166. Chapman & Hall,
1997.

6. S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating se-
quential processes. Journal of the ACM, 31(3):560–599, 1984.

7. S. Chaki, S. K. Rajamani, and J. Rehof. Types as models: Model checking message-
passing programs. In POPL 02: ACM Principles of Programming Languages. ACM,
2002.

8. J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S. Laubach, and H. Zheng.
Bandera: Extracting finite-state models from Java source code. In ICSE 00: Inter-
national Conference on Software Engineering, pages 439–448. ACM, 2000.

9. M. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. Pasareanu, Robby, W. Visser,
and H. Zheng. Tool-supported program abstraction for finite-state verification. In
ICSE 01: International Conference on Software Engineering, pages 177–187. ACM,
2001.

10. C. Fournet, C. A. R. Hoare, S. K. Rajamani, and J. Rehof. Stuck-free conformance
theory for CCS. Technical Report MSR-TR-2004-09, Microsoft Research, 2004.

11. C. Fournet, C.A.R. Hoare, S.K. Rajamani, and J. Rehof. Stuck-free conformance.
In CAV 04: Computer-Aided Verification, LNCS. Springer-Verlag, July 2004.

12. J. Hatcliff and M. Dwyer. Using the bandera toolset to model check properties of
concurrent java software. In CONCUR 2001, LNCS 2154. Springer-Verlag, 2001.

13. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

14. G. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279–295, May 1997.

15. A. Igarashi and N. Kobayashi. A generic type system for the Pi-calculus. In POPL
01: Principles of Programming Languages, pages 128–141. ACM, 2001.

16. R. Iosif and R. Sisto. dSPIN: A dynamic extension of SPIN. In SPIN 99: SPIN
Workshop, LNCS 1680, pages 261–276. Springer-Verlag, 1999.

17. K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. In POPL
89: ACM Principles of Programming Languages, pages 344–352. ACM, 1989.

18. R. Milner. Communication and Concurrency. Prentice Hall, 1989.

19. R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, 1999.

20. I. Phillips. Refusal testing. Theoretical Computer Science, 50(2):241 – 284, 1987.

196 S.K. Rajamani and J. Rehof

21. Robby, M. Dwyer, and J. Hatcliff. Bogor: An extensible and highly-modular model
checking framework. In FSE 03: Foundations of Software Engineering, pages 267–
276. ACM, 2003.

22. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.
23. S. D. Stoller. Model-checking multi-threaded distributed Java programs. Interna-

tional Journal on Software Tools for Technology Transfer, 4(1):71–91, oct 2002.
24. W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. In ASE

00: Automated Software Engineering, pages 3–12, 2000.

Author Index

Abdulla, Parosh Aziz 115
Ågren, Herman 115
Åkerlund, Ove 115
Andersson, Johan 130
Arbab, Farhad 1, 9

Bonsangue, M.M. 42

Clarke, Dave 9
Cook, Byron 96
Costa, David 9

de Boer, F.S. 42
Deneux, Johann 115
Dwyer, Matthew B. 161

Ermedahl, Andreas 146

Gustafsson, Jan 146

Hatcliff, John 161
Hoosier, Matthew 161

Jacob, Joost 26, 42

Kok, Joost N. 1
Kroening, Daniel 96

Lisper, Björn 146

Norström, Christer 130

Quinlan, Dan 57

Rajamani, Sriram K. 181
Rehof, Jakob 181
Robby 161

Saebjornsen, Andreas 57
Sandell, Daniel 146
Schordan, Markus 57
Sharygina, Natasha 96
St̊almarck, Gunnar 115
Stam, A. 42

van der Torre, L. 42

Wall, Anders 130

Yi, Qing 57

Zimmermann, Wolf 74

	Frontmatter
	Interaction and Coordination of Tools for Structured Data
	Modelling Coordination in Biological Systems
	A Rule Markup Language and Its Application to UML
	Using XML Transformations for Enterprise Architectures
	Classification and Utilization of Abstractions for Optimization
	On the Correctness of Transformations in Compiler Back-Ends
	Accurate Theorem Proving for Program Verification
	Designing Safe, Reliable Systems Using Scade
	Decreasing Maintenance Costs by Introducing Formal Analysis of Real-Time Behavior in Industrial Settings
	Static Timing Analysis of Real-Time Operating System Code
	A Case Study in Domain-Customized Model Checking for Real-Time Component Software
	Models for Contract Conformance
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

